搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究

梁培 刘阳 王乐 吴珂 董前民 李晓艳

引用本文:
Citation:

表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究

梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳

Investigation of the doping failure induced by DB in the SiNWs using first principles method

Liang Pei, Liu Yang, Wang Le, Wu Ke, Dong Qian-Min, Li Xiao-Yan
PDF
导出引用
  • 利用第一性原理方法, 本文计算了B/N单掺杂SiNWs, 以及含有表面悬挂键的B/N单掺杂硅纳米线的总能和电子结构, 计算结果表明, 悬挂键的出现会导致单原子掺杂失效. 能带结构分析表明, B/N掺杂的H钝化的SiNWs表现出正常的p/n特性, 而表面悬挂键(dangling binding, DB)的存在会导致p型(B原子)或者n型(N原子)掺杂失效; 其失效的原因主要是因为表面悬挂键所引入的缺陷能级俘获了n型杂质(p型杂质)所带来的电子(空穴); 利用小分子(SO2)吸附饱和悬挂键可以起到激活杂质的作用, 进而实现Si纳米线的有效掺杂.
    First-principles calculations are employed to investigate total energies and electronic structures of the B/N doped silicon nanowires, the B/N doped silicon nanowires with and without dangling bond (DB). And the calculation indicates that the DB would lead to the doping failure. Band-structure calculations indicate that B/N doped silicon nanowires without dangling bond show regular p/n type of the charge carrier, while the dangling bond would cause signal atom doping failure, which is not due to the transfer of electrons, but results from the capturing of the electron (hole) by the defect energy level induced by the surface dangling bond. Moreover, the small molecule adsorption can reactivate impurities doping p/n characteristics. The reactivation mechanism is not the transfer of the electrons, thus it can hold the doping characteristics.
    • 基金项目: 国家自然科学基金(批准号: 61006051, 61177050)和浙江省自然科学基金(批准号: Y407370, Y6100244, Z1110222)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006051, 61177050), and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y407370, Y6100244, Z1110222).
    [1]

    Rurali R 2010 Rev. Mod. Phys. 82 427

    [2]

    Kempa T J, Tian B, Kim D R, Hu J, Zheng X, Lieber C M 2008 Nano Lett. 8 3456

    [3]

    Tian B, Kempa T J, Lieber C M 2008 Chem. Soc. Rev. 38 16

    [4]

    Cui Y, Wei Q, Park H, Lieber C M 2001 Science 293 1289

    [5]

    Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H, Lieber C M 2001 Science 294 1313

    [6]

    Moon C Y, Lee W J, Chang K 2008 Nano Lett. 8 3086

    [7]

    Rurali R, Palummo M, Cartoixá X 2010 Phys. Rev. B 81 23

    [8]

    Iori F, Degoli E, Magri R, Marri I, Gantele G, Ninno D, Trani F, Pulci O, Ossicini S 2007 Phys. Rev. B 76 8

    [9]

    Ossicini S, Degoli E, Iori F, Luppi E, Magri R, Gantele G, Trani F, Ninno D 2005 Appl. Phys. Lett. 87 173120

    [10]

    Peelaers H, Partoens B, Peeters F M 2006 Nano Lett. 6 2781

    [11]

    Chrost J, Hinarejos J J, Michel E G, Miranda R 1995 Surf. Sci. 330 34

    [12]

    Livadaru L, Xue P, Shaterzadeh-Yazdi Z, DiLabio G A, Mutus J, Pitters J L, Sanders B C, Wolkow R A 2010 New J. Phys. 12 083018

    [13]

    Ma D D D, Lee C S, Au F C K, Tong S Y, Lee S T 2003 Science 299 1874

    [14]

    Schmid H, Bj rk M T, Knoch J, Riel H, Riess W, Rice P, Topuria T 2008 J. Appl. Phys. 103 024304

    [15]

    Zhang R Q, Lifshitz Y, Ma D D D, Zhao Y L, Frauenheim T, Lee S T, Tong S Y 2005 J. Chem. Phys. 123 144703

    [16]

    Zhang R, Zheng W, Jiang Q 2009 J. Phys. Chem. C 113 10384

    [17]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [20]

    Cakmak M, Srivastava G P 2003 Surf. Sci. 532 556

  • [1]

    Rurali R 2010 Rev. Mod. Phys. 82 427

    [2]

    Kempa T J, Tian B, Kim D R, Hu J, Zheng X, Lieber C M 2008 Nano Lett. 8 3456

    [3]

    Tian B, Kempa T J, Lieber C M 2008 Chem. Soc. Rev. 38 16

    [4]

    Cui Y, Wei Q, Park H, Lieber C M 2001 Science 293 1289

    [5]

    Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H, Lieber C M 2001 Science 294 1313

    [6]

    Moon C Y, Lee W J, Chang K 2008 Nano Lett. 8 3086

    [7]

    Rurali R, Palummo M, Cartoixá X 2010 Phys. Rev. B 81 23

    [8]

    Iori F, Degoli E, Magri R, Marri I, Gantele G, Ninno D, Trani F, Pulci O, Ossicini S 2007 Phys. Rev. B 76 8

    [9]

    Ossicini S, Degoli E, Iori F, Luppi E, Magri R, Gantele G, Trani F, Ninno D 2005 Appl. Phys. Lett. 87 173120

    [10]

    Peelaers H, Partoens B, Peeters F M 2006 Nano Lett. 6 2781

    [11]

    Chrost J, Hinarejos J J, Michel E G, Miranda R 1995 Surf. Sci. 330 34

    [12]

    Livadaru L, Xue P, Shaterzadeh-Yazdi Z, DiLabio G A, Mutus J, Pitters J L, Sanders B C, Wolkow R A 2010 New J. Phys. 12 083018

    [13]

    Ma D D D, Lee C S, Au F C K, Tong S Y, Lee S T 2003 Science 299 1874

    [14]

    Schmid H, Bj rk M T, Knoch J, Riel H, Riess W, Rice P, Topuria T 2008 J. Appl. Phys. 103 024304

    [15]

    Zhang R Q, Lifshitz Y, Ma D D D, Zhao Y L, Frauenheim T, Lee S T, Tong S Y 2005 J. Chem. Phys. 123 144703

    [16]

    Zhang R, Zheng W, Jiang Q 2009 J. Phys. Chem. C 113 10384

    [17]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [20]

    Cakmak M, Srivastava G P 2003 Surf. Sci. 532 556

  • [1] 张燕如, 张琳, 任俊峰, 原晓波, 胡贵超. Gd掺杂ZnO纳米线磁耦合性质的第一性原理研究. 物理学报, 2015, 64(17): 178103. doi: 10.7498/aps.64.178103
    [2] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [3] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [4] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [5] 袁娣, 黄多辉, 罗华锋. Be, O共掺杂实现p型AlN的第一性原理研究. 物理学报, 2012, 61(14): 147101. doi: 10.7498/aps.61.147101
    [6] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [7] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [8] 袁娣, 罗华锋, 黄多辉, 王藩侯. Zn,O共掺杂实现p型AlN的第一性原理研究. 物理学报, 2011, 60(7): 077101. doi: 10.7498/aps.60.077101
    [9] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源. 物理学报, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [10] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [11] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [12] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [13] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [14] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [15] 陈国栋, 王六定, 安博, 杨敏. 碳掺杂硼氮纳米管电子场发射的第一性原理研究. 物理学报, 2009, 58(13): 254-S258. doi: 10.7498/aps.58.254
    [16] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究. 物理学报, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [17] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算. 物理学报, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [18] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [19] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究. 物理学报, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  6373
  • PDF下载量:  623
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-07
  • 修回日期:  2012-01-12
  • 刊出日期:  2012-08-05

/

返回文章
返回