Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of single-molecule-structure determination of dithienoborepin isomers

Peng Shu-Ping Huang Xu-Dong Liu Qian Ren Peng Wu Dan Fan Zhi-Qiang

Citation:

First-principles study of single-molecule-structure determination of dithienoborepin isomers

Peng Shu-Ping, Huang Xu-Dong, Liu Qian, Ren Peng, Wu Dan, Fan Zhi-Qiang
PDF
HTML
Get Citation
  • Previous research results show that the conductance difference in molecular junction caused by quantum interference (QI) effect is an important way to identify isomers or improve the recognition sensitivity. Recently, single-molecule conductance of two fully π-conjugated dithienoborepin (DTB) isomers (DTB-A and DTB-B) with tricoordinate boron centers has been measured by using the scanning tunneling microscopy break junction technique. The result shows that QI can enhance chemical responsivity in single-molecule DTB junction. In this work, the first-principles method based on density functional theory and non-equilibrium Green's function is used to study the influence of QI effect on spin-transport property of DTB molecular junction connected to the nickel electrode, and the purpose of distinguishing DTB isomers (DTB-A and DTB-B) is realized by using amino and nitro passivation. The results show that the pristine DTB-A molecule and DTB-B molecule both have a up-spin transmission peak dominated by HOMO and a down-spin transmission peak dominated by LUMO on both sides of the Fermi level, and the energy positions and coefficients of two transmission peaks are basically the same. Therefore, the up-spin and down-spin current curves of the two junctions basically coincide, so that it is impossible to clearly distinguish the two isomers of DTB molecule simply by spin current. The QI can enhance the spin-polarized transport capability of two orbitals of amino-passivated DTB-A molecule to varying degrees but weaken the spin-polarized transport capability of two orbitals of amino-passivated DTB-B molecule. Therefore, the current of DTB-A molecular junction passivated by amino group is always higher than that of DTB-B molecular junction passivated by amino group. However, the QI can greatly enhance the spin-polarized transport capability of two orbitals of nitro-passivated DTB-B molecule but weaken the spin-polarized transport capability of two orbitals of nitro-passivated DTB-A molecule. Therefore, the current of DTB-B molecular junction passivated by nitro is always higher than that of DTB-A molecular junction passivated by nitro. Because the QI has different effects on the spin-transport capability of DTB-A and DTB-B passivated by amino or nitro group, so the two isomers of DTB molecule can be distinguished by measuring the spin current value. The above conclusions provide more theoretical guidance for the practical preparation of spin molecular junctions and the regulation of their spin-transport performance in the future.
      Corresponding author: Fan Zhi-Qiang, zqfan@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074046, 12204066), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 20C0039, 19C0027), the Young Researchers’ Cultivation Programme of Changsha University of Science & Technology, China (Grant No. 2019QJCZ022), and the Hunan Postgraduate Scientific Research and Innovation Project, China (Grant No. CXCLY2022141).
    [1]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [2]

    Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, van der Zant H S J 2014 Nat. Nanotechnol. 9 830Google Scholar

    [3]

    Koley S, Chakrabarti S 2018 Chem. Eur. J. 24 5876Google Scholar

    [4]

    Sharma P, Bernard L S, Bazigos A, Magrez A, Ionescu A M 2015 ACS Nano 9 620Google Scholar

    [5]

    Kumar S, Wang Z, Davila N, Kumari N, Norris K J, Huang X, Strachan J P, Vine D, Kilcoyne A L D, Nishi Y, Williams R S 2017 Nat. Commun. 8 658Google Scholar

    [6]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D, Wang C K 2019 Physica E 106 270Google Scholar

    [7]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [8]

    Komeda J, Takada K, Maeda H, Fukui N, Tsuji T, Nishihara H 2022 Chem. Eur. J. 28 e202201316Google Scholar

    [9]

    Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Surf. Sci. 519 146203Google Scholar

    [10]

    Petersen M Å, Rasmussen B, Andersen N N, Sauer S P A, Nielsen M B, Beeren S R, Pittelkow M 2017 Chem. Eur. J. 23 17010Google Scholar

    [11]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [12]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [13]

    Lambert C J 2015 Chem. Soc. Rev. 44 875Google Scholar

    [14]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [15]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce M R, Lambert C J 2015 Nat. Commun. 6 6389Google Scholar

    [16]

    Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687Google Scholar

    [17]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [18]

    Yang Y, Gantenbein M, Alqorashi A, Wei J, Sangtarash S, Hu D, Sadeghi H, Zhang R, Pi J, Chen L, Huang X, Li R, Liu J, Shi J, Hong W, Lambert C J, Bryce M R 2018 J. Phys. Chem. C 122 14965Google Scholar

    [19]

    Liu X, Sangtarash S, Reber D, Zhang D, Sadeghi H, Shi J, Xiao Z Y, Hong W, Lambert C J, Liu S X 2017 Angew. Chem. 129 179Google Scholar

    [20]

    Borges A, Fung E D, Ng F, Venkataraman L, Solomon G C 2016 J. Phys. Chem. Lett. 7 4825Google Scholar

    [21]

    Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J, Renaud N 2016 Nat. Chem. 8 1099Google Scholar

    [22]

    Liu R, Bi J J, Xie Z, Yin K, Wang D, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [23]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J, Duan L L, Huo Y, Shao X, Hong W, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [24]

    Yang G, Sangtarash S, Liu Z, Li X, Sadeghi H, Tan Z, Li R, Zheng J, Dong X, Liu J, Yang Y, Shi J, Xiao Z, Zhang G, Lambert C, Hong W, Zhang D 2017 Chem. Sci. 8 7505Google Scholar

    [25]

    Li Y, Buerkle M, Li G, Rostamian A, Wang H, Wang Z, Bowler D R, Miyazaki T, Xiang L, Asai Y, Zhou G, Tao N 2019 Nat. Mater. 18 357Google Scholar

    [26]

    Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W 2018 J. Am. Chem. Soc. 140 17685Google Scholar

    [27]

    Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C, Hong W 2019 Nat. Mater. 18 364Google Scholar

    [28]

    Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen Z B, Shi J, Xiao Z, Hong W, Tian Z Q 2018 Chem. Sci. 9 5033Google Scholar

    [29]

    Liu J, Zhao X, Al-Galiby Q, Huang X, Zheng J, Li R, Huang C, Yang Y, Shi J, Manrique D Z, Lambert C J, Bryce M R, Hong W 2017 Angew. Chem. 129 13241Google Scholar

    [30]

    Cai S, Deng W, Huang F, Chen L, Tang C, He W, Long S, Li R, Tan Z, Liu J, Shi J, Liu Z, Xiao Z, Zhang D, Hong W 2019 Angew. Chem. Int. Ed. 58 3829Google Scholar

    [31]

    Ozawa H, Baghernejad M, Al-Owaedi O A, Kaliginedi V, Nagashima T, Ferrer J, Wandlowski T, García-Suárez V M, Broekmann P, Lambert C J, Haga M A 2016 Chem. Eur. J. 22 12732Google Scholar

    [32]

    Greenwald J E, Cameron J, Findlay N J, Fu T, Gunasekaran S, Skabara P J, Venkataraman L 2021 Nat. Nanotechnol. 16 313Google Scholar

    [33]

    Trasobares J, Vuillaume D, Théron D, Clément N 2016 Nat. Commun. 7 12850Google Scholar

    [34]

    Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Phys. E 128 114542Google Scholar

    [35]

    Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar

    [36]

    Fan Z Q, Xie F, Jiang X W, Wei Z, Li S S 2016 Carbon 110 200Google Scholar

    [37]

    Kushmerick J 2009 Nature 462 994Google Scholar

    [38]

    Richter S, Mentovich E, Elnathan R 2018 Adv. Mater. 30 1706941Google Scholar

    [39]

    Liu R, Han Y, Sun F, Khatri G, Kwon J, Nickle C, Wang L, Wang C K, Thompson D, Li Z L, Nijhuis C A, del Barco E 2022 Adv. Mater. 34 2202135Google Scholar

    [40]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [41]

    Zhou Q, Yang Y, Ni J, Li Z, Zhang Z 2010 Nano Res. 3 423Google Scholar

    [42]

    Baghernejad M, Van Dyck C, Bergfield J, Levine D R, Gubicza A, Tovar J D, Calame M, Broekmann P, Hong W 2019 Chem. Eur. J. 25 15141Google Scholar

    [43]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [44]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [45]

    Pan H, Tang L M, Chen K Q 2022 Phys. Rev. B 105 064401Google Scholar

  • 图 1  氨基或硝基钝化前后DTB-A和DTB-B分子结示意图

    Figure 1.  Schematic diagrams of DTB-A and DTB-B molecular junctions before and after amino or nitro passivation.

    图 2  零偏压下(a) A1和(b) B1的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 费米能级在能量尺度上被设定为零

    Figure 2.  Spin-transmission spectra of (a) A1 and (b) B1 at zero bias, the blue line and the red line represent up-spin and down-spin, respectively. The Fermi level is set at zero in the energy scale.

    图 3  A1的(a) HOMO↑对应的透射本征态和(b) LUMO↓对应的透射本征态; B1的(c) HOMO↑对应的透射本征态和(d) LUMO↓对应的透射本征态

    Figure 3.  The transmission eigenstates of (a) HOMO↑ and (b) LUMO↓of A1; the transmission eigenstates of (c) HOMO↑and (d) LUMO↓ of B1.

    图 4  零偏压下(a) A2和(b) B2的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 费米能级在能量尺度上被设定为零

    Figure 4.  Spin-transport spectra of (a) A2 and (b) B2 at zero bias, the blue line and the red line represent up-spin and down-spin, respectively. The Fermi level is set at zero in the energy scale.

    图 5  A2的(a) HOMO↑对应的透射本征态和(b) LUMO↓对应的透射本征态; B2的(c) HOMO↑对应的透射本征态和(d) LUMO↓对应的透射本征态

    Figure 5.  The transmission eigenstates of (a) up-spin HOMO and (b) down-spin LUMO of A2; the transmission eigenstates of (c) up-spin HOMO and (d) down-spin LUMO of B2.

    图 6  零偏压下(a) A3和(b) B3的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 费米能级在能量尺度被设定为零

    Figure 6.  Spin-transport spectra of (a) A3 and (b) B3 at zero bias, the blue line and the red line represent up-spin and down-spin, respectively. The Fermi level is set at zero in the energy scale.

    图 7  A3的(a) HOMO↑和(b) LUMO↓对应的透射本征态; B3的(c)HOMO↑和(d)LUMO↓对应的透射本征态

    Figure 7.  The transmission eigenstates of (a) up-spin HOMO and (b) down-spin LUMO of A3; the transmission eigenstates of (c) up-spin HOMO and (d) down-spin LUMO of B3.

    图 8  零偏压下A2, B2, A3和B3在费米能级上的传输路径

    Figure 8.  The transmission pathways of A2, B2, A3 and B3 at Fermi level under zero bias.

    图 9  (a)—(c) A1, B1, A2, B2, A3和B3分别在±1.8 V范围内的自旋电流-电压特性; (d)在同一自旋状态下, A2与B2和A3与B3随电压的变化的自旋电流之比

    Figure 9.  (a)–(c) Spin-resolved current-voltage characteristics of A1, B1, A2, B2, A3, and B3 in the range of ±1.8 V, respectively; (d) the variation of spin-current ratios with voltages in the same spin state of A2 to B2 and A3 to B3.

    图 10  (a) A1和(b) B1在0 V, ±0.8 V 和 ±1.6 V偏压下的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 黑色实线之间的区域为偏压窗口, 费米能级在能量尺度上被设定为零

    Figure 10.  Spin-transmission spectra of (a) A1 and (b) B1 at 0 V, ±0.8 V 和 ±1.6 V. The blue line and the red line represent up-spin and down-spin, respectively. The region between the black solid lines is the bias window. The Fermi level is set at zero in the energy scale.

    图 11  (a) A2和(b) B2在0 V, ±0.8 V 和 ±1.6 V偏压下的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 黑色实线之间的区域为偏压窗口, 费米能级在能量尺度上被设定为零

    Figure 11.  Spin-transmission spectra of (a) A2 and (b) B2 at 0 V, ±0.8 V 和 ±1.6 V. The blue line and the red line represent up-spin and down-spin, respectively. The region between the black solid lines is the bias window. The Fermi level is set at zero in the energy scale.

    图 12  (a) A3和(b) B3在0 V, ±0.4 V 和 ±1.2 V偏压下的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 黑色实线之间的区域为偏压窗口, 费米能级在能量尺度上被设定为零

    Figure 12.  Spin-transmission spectra of (a) A3 and (b) B3 at 0 V, ±0.4 V 和 ±1.2 V. The blue line and the red line represent up-spin and down-spin, respectively. The region between the black solid lines is the bias window. The Fermi level is set at zero in the energy scale.

  • [1]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [2]

    Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, van der Zant H S J 2014 Nat. Nanotechnol. 9 830Google Scholar

    [3]

    Koley S, Chakrabarti S 2018 Chem. Eur. J. 24 5876Google Scholar

    [4]

    Sharma P, Bernard L S, Bazigos A, Magrez A, Ionescu A M 2015 ACS Nano 9 620Google Scholar

    [5]

    Kumar S, Wang Z, Davila N, Kumari N, Norris K J, Huang X, Strachan J P, Vine D, Kilcoyne A L D, Nishi Y, Williams R S 2017 Nat. Commun. 8 658Google Scholar

    [6]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D, Wang C K 2019 Physica E 106 270Google Scholar

    [7]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [8]

    Komeda J, Takada K, Maeda H, Fukui N, Tsuji T, Nishihara H 2022 Chem. Eur. J. 28 e202201316Google Scholar

    [9]

    Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Surf. Sci. 519 146203Google Scholar

    [10]

    Petersen M Å, Rasmussen B, Andersen N N, Sauer S P A, Nielsen M B, Beeren S R, Pittelkow M 2017 Chem. Eur. J. 23 17010Google Scholar

    [11]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [12]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [13]

    Lambert C J 2015 Chem. Soc. Rev. 44 875Google Scholar

    [14]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [15]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce M R, Lambert C J 2015 Nat. Commun. 6 6389Google Scholar

    [16]

    Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687Google Scholar

    [17]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [18]

    Yang Y, Gantenbein M, Alqorashi A, Wei J, Sangtarash S, Hu D, Sadeghi H, Zhang R, Pi J, Chen L, Huang X, Li R, Liu J, Shi J, Hong W, Lambert C J, Bryce M R 2018 J. Phys. Chem. C 122 14965Google Scholar

    [19]

    Liu X, Sangtarash S, Reber D, Zhang D, Sadeghi H, Shi J, Xiao Z Y, Hong W, Lambert C J, Liu S X 2017 Angew. Chem. 129 179Google Scholar

    [20]

    Borges A, Fung E D, Ng F, Venkataraman L, Solomon G C 2016 J. Phys. Chem. Lett. 7 4825Google Scholar

    [21]

    Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J, Renaud N 2016 Nat. Chem. 8 1099Google Scholar

    [22]

    Liu R, Bi J J, Xie Z, Yin K, Wang D, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [23]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J, Duan L L, Huo Y, Shao X, Hong W, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [24]

    Yang G, Sangtarash S, Liu Z, Li X, Sadeghi H, Tan Z, Li R, Zheng J, Dong X, Liu J, Yang Y, Shi J, Xiao Z, Zhang G, Lambert C, Hong W, Zhang D 2017 Chem. Sci. 8 7505Google Scholar

    [25]

    Li Y, Buerkle M, Li G, Rostamian A, Wang H, Wang Z, Bowler D R, Miyazaki T, Xiang L, Asai Y, Zhou G, Tao N 2019 Nat. Mater. 18 357Google Scholar

    [26]

    Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W 2018 J. Am. Chem. Soc. 140 17685Google Scholar

    [27]

    Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C, Hong W 2019 Nat. Mater. 18 364Google Scholar

    [28]

    Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen Z B, Shi J, Xiao Z, Hong W, Tian Z Q 2018 Chem. Sci. 9 5033Google Scholar

    [29]

    Liu J, Zhao X, Al-Galiby Q, Huang X, Zheng J, Li R, Huang C, Yang Y, Shi J, Manrique D Z, Lambert C J, Bryce M R, Hong W 2017 Angew. Chem. 129 13241Google Scholar

    [30]

    Cai S, Deng W, Huang F, Chen L, Tang C, He W, Long S, Li R, Tan Z, Liu J, Shi J, Liu Z, Xiao Z, Zhang D, Hong W 2019 Angew. Chem. Int. Ed. 58 3829Google Scholar

    [31]

    Ozawa H, Baghernejad M, Al-Owaedi O A, Kaliginedi V, Nagashima T, Ferrer J, Wandlowski T, García-Suárez V M, Broekmann P, Lambert C J, Haga M A 2016 Chem. Eur. J. 22 12732Google Scholar

    [32]

    Greenwald J E, Cameron J, Findlay N J, Fu T, Gunasekaran S, Skabara P J, Venkataraman L 2021 Nat. Nanotechnol. 16 313Google Scholar

    [33]

    Trasobares J, Vuillaume D, Théron D, Clément N 2016 Nat. Commun. 7 12850Google Scholar

    [34]

    Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Phys. E 128 114542Google Scholar

    [35]

    Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar

    [36]

    Fan Z Q, Xie F, Jiang X W, Wei Z, Li S S 2016 Carbon 110 200Google Scholar

    [37]

    Kushmerick J 2009 Nature 462 994Google Scholar

    [38]

    Richter S, Mentovich E, Elnathan R 2018 Adv. Mater. 30 1706941Google Scholar

    [39]

    Liu R, Han Y, Sun F, Khatri G, Kwon J, Nickle C, Wang L, Wang C K, Thompson D, Li Z L, Nijhuis C A, del Barco E 2022 Adv. Mater. 34 2202135Google Scholar

    [40]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [41]

    Zhou Q, Yang Y, Ni J, Li Z, Zhang Z 2010 Nano Res. 3 423Google Scholar

    [42]

    Baghernejad M, Van Dyck C, Bergfield J, Levine D R, Gubicza A, Tovar J D, Calame M, Broekmann P, Hong W 2019 Chem. Eur. J. 25 15141Google Scholar

    [43]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [44]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [45]

    Pan H, Tang L M, Chen K Q 2022 Phys. Rev. B 105 064401Google Scholar

  • [1] Yan Yan, Sun Feng, Yang Zhi, Kong Cheng-Yu, Ge Yun-Long, Chen Deng-Hui, Qiu Shuai, Li Zong-Liang. Mechanical modulation effects of gold electrodes on geometries and electronic transport properties of azobenzene molecular junctions. Acta Physica Sinica, 2024, 73(8): 088502. doi: 10.7498/aps.73.20231999
    [2] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240174
    [3] Zhang Ming-Mei, Guo Ya-Tao, Fu Xu-Ri, Li Meng-Lei, Ren Bao-Cang, Zheng Jun, Yuan Rui-Yang. Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS2 nanoribbons with ferromagnetic electrode. Acta Physica Sinica, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [4] Qin Zhi-Jie, Zhang Hui-Qing, Zhang Guang-Ping, Ren Jun-Feng, Wang Chuan-Kui, Hu Gui-Chao, Qiu Shuai. Theoretical study of introducing spin into nonmagnetic graphene-based single-molecule junction by edge modifications. Acta Physica Sinica, 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [5] Li Jia-Jin, Liu Qian, Wu Dan, Deng Xiao-Qing, Zhang Zhen-Hua, Fan Zhi-Qiang. Giant rectification of ferromagnetic zigzag SiC nanoribbons connecting anthradithiophene molecules. Acta Physica Sinica, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [6] Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua. Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices. Acta Physica Sinica, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [7] Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin. First-principles study on transport property of molecular} device with non-collinear electrodes. Acta Physica Sinica, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [8] Zhao Wen-Jing, Wen Ling-Hua. Quantum reflection and interference of spin-dependent Bose-Einstein condensates in semi-infinite potential wells. Acta Physica Sinica, 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [9] Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui. Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Acta Physica Sinica, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [10] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [11] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [12] He Ze-Long, Bai Ji-Yuan, Li Peng, Lü Tian-Quan. Electron transport through T-shaped double quantum dot molecule Aharonov-Bohm interferometer. Acta Physica Sinica, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [13] Bai Ji-Yuan, He Ze-Long, Yang Shou-Bin. Charge and spin transport through parallel-coupled double-quantum-dot molecule A-B interferometer. Acta Physica Sinica, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [14] Dou Jun-Qing, Kang Xue-Ya, Tuerdi Wumair, Hua Ning, Han Ying. The first principles and experimental study on Mn-doped LiFePO4. Acta Physica Sinica, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [15] Ma Guo-Jia, Zhu Jia-Qi, Gong Shui-Li, Gao Wei. First principles studies of nitrogen doped tetrahedral amorphous carbon. Acta Physica Sinica, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [16] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [17] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [18] An Yi-Peng, Yang Chuan-Lu, Wang Mei-Shan, Ma Xiao-Guang, Wang De-Hua. First-principles study of electronic transport properties of C20F20 molecule. Acta Physica Sinica, 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [19] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Zheng Xin, Fang Yu-Chao, Gao Tao. First-pricinples design on atomic scale for new lightweight hydrogen storage materials. Acta Physica Sinica, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [20] Zhu Guo-Liang, Shu Da, Dai Yong-Bing, Wang Jun, Sun Bao-De. First principles study on substitution behaviour of Si in TiAl3. Acta Physica Sinica, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
Metrics
  • Abstract views:  2153
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2022
  • Accepted Date:  20 December 2022
  • Available Online:  26 December 2022
  • Published Online:  05 March 2023

/

返回文章
返回