搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO 极性表面及其N原子吸附机理的第一性原理研究

李琦 范广涵 熊伟平 章勇

ZnO 极性表面及其N原子吸附机理的第一性原理研究

李琦, 范广涵, 熊伟平, 章勇
PDF
导出引用
  • 基于密度泛函理论的第一性原理赝势法计算了ZnO极性表面的几何结构和电子结构特性,对比分析了ZnO(0001)和ZnO(0001)表面结构弛豫、能带结构、电子态密度及N吸附ZnO极性表面的形成能情况.计算结果表明: 相对于ZnO(0001)表面,ZnO(0001)表面受结构弛豫影响更加明显,而ZnO(0001)表面完整性更好.相对于体相ZnO结构,ZnO(0001)表面的能带带隙变窄,同时价带顶附近能级非局域性增强使晶体表面的导电性能变得更好;而ZnO(0001)表面的能带带隙变宽,由于O-
    • 基金项目: 广东省关键领域重点突破粤港合作计划(批准号: 2007A010501008)和高等学校博士学科点专项科研基金(批准号: 2007498351).
    [1]

    [1]Bagnall D M, Chen Y F, Zhu Z, Koyama S, Shen M Y, Goto T, Yao T 1997 Appl. Phys. Lett. 70 2230

    [2]

    [2]Chang Y L, Zhang Q F, Sun H, Wu J L 2007 Acta Phys.Sin. 56 2399 (in Chinese) [常艳玲、张琦锋、孙晖、吴锦雷 2007 物理学报 56 2399]

    [3]

    [3]Yang J J, Fang Q Q, Wang B M, Wang C P, Zhou J, Li Y, Liu Y M, Lü Q R 2007 Acta Phys.Sin. 56 1116 (in Chinese) [杨景景、方庆清、王保明、王翠平、周军、李雁、刘艳美、吕庆荣 2007 物理学报 56 1116]

    [4]

    [4]Matsui H, Saeki H, Kawai T, Sasaki A, Yoshimoto M, Tsubaki M, Tabata H 2005 J. Vac. Sci. Technol. B 22 2454

    [5]

    [5]Dong Y F, Fang Z Q, Look D C, Cantwell G, Zhang J, Song J J, Brillson L J 2008 Appl. Phys. Lett. 93 072111

    [6]

    [6]Hong S K, Hanada T, Ko H J, Chen Y, Imai D, Araki K, Shinohara M, Saitoh K, Terauchi M, Yao T 2002 Phys. Rev. B 65 115331

    [7]

    [7]Losurdo M, Giangregorio M M 2005 Appl. Phys. Lett. 86 091901

    [8]

    [8]Nakahara K 2004 U.S. Patent 7002179

    [9]

    [9]Nishidate K, Yoshizawa M, Hasegawa M 2008 Phys. Rev. B 77 035330

    [10]

    ]Wang Y, Meyer B, Yin X, Kunat M, Langenberg D, Traeger F, Birkner A, Woll C 2005 Phys. Rev. Lett. 95 266104

    [11]

    ]Park J S, Hong S K, Minegishi T, Park S H, Im I H, Hanada T, Cho M W, Yao T 2007 Appl. Phys. Lett. 90 201907

    [12]

    ]Chevtchenko S A, Moore J C, zgür , Gu X, Baski A A, Morko H, Nemeth B, Nause J E 2006 Appl. Phys. Lett. 89 182111

    [13]

    ]Segall M D, Lindan P J D, Probert M J 2002 J. Phys.: Condens. Matter 14 2717

    [14]

    ]Vanderbilt D 1990 Phys. Rev. B 41 789

    [15]

    ]Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [16]

    ]Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [17]

    ]Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [18]

    ]Karazhanov S Z, Ravindran P, Kjekshus A 2006 J. Appl. Phys. 100 043709

    [19]

    ]Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [20]

    ]Janotti A, Segev D, Van de Walle C G 2006 Phys. Rev. B 74 45202

    [21]

    ]Leontiev S A, Koshcheev S V, Devyatov V G, Cherkashin A E, Mikheeva E P 1997 J. Struct. Chem. 38 725

    [22]

    ]Schrer P, Krüger P, Pollmann J 1993 Phys. Rev. B 47 6971

    [23]

    ]Wagner M R, Haboeck U, Zimmer P, Hoffmann A, Lautenschlger S, Neumann C, Sann J, Meyer B K 2007 Proc. SPIE 6474 64740X

    [24]

    ]Bartel T P, Wagner M R, Haboeck U, Hoffmann A, Neumann C, Lautenschlger S, Sann J, Meyer B K 2008 Proc. SPIE 6895 689502

    [25]

    ]Mariano A N, Hanneman R E 1963 J. Appl. Phys. 34 384

  • [1]

    [1]Bagnall D M, Chen Y F, Zhu Z, Koyama S, Shen M Y, Goto T, Yao T 1997 Appl. Phys. Lett. 70 2230

    [2]

    [2]Chang Y L, Zhang Q F, Sun H, Wu J L 2007 Acta Phys.Sin. 56 2399 (in Chinese) [常艳玲、张琦锋、孙晖、吴锦雷 2007 物理学报 56 2399]

    [3]

    [3]Yang J J, Fang Q Q, Wang B M, Wang C P, Zhou J, Li Y, Liu Y M, Lü Q R 2007 Acta Phys.Sin. 56 1116 (in Chinese) [杨景景、方庆清、王保明、王翠平、周军、李雁、刘艳美、吕庆荣 2007 物理学报 56 1116]

    [4]

    [4]Matsui H, Saeki H, Kawai T, Sasaki A, Yoshimoto M, Tsubaki M, Tabata H 2005 J. Vac. Sci. Technol. B 22 2454

    [5]

    [5]Dong Y F, Fang Z Q, Look D C, Cantwell G, Zhang J, Song J J, Brillson L J 2008 Appl. Phys. Lett. 93 072111

    [6]

    [6]Hong S K, Hanada T, Ko H J, Chen Y, Imai D, Araki K, Shinohara M, Saitoh K, Terauchi M, Yao T 2002 Phys. Rev. B 65 115331

    [7]

    [7]Losurdo M, Giangregorio M M 2005 Appl. Phys. Lett. 86 091901

    [8]

    [8]Nakahara K 2004 U.S. Patent 7002179

    [9]

    [9]Nishidate K, Yoshizawa M, Hasegawa M 2008 Phys. Rev. B 77 035330

    [10]

    ]Wang Y, Meyer B, Yin X, Kunat M, Langenberg D, Traeger F, Birkner A, Woll C 2005 Phys. Rev. Lett. 95 266104

    [11]

    ]Park J S, Hong S K, Minegishi T, Park S H, Im I H, Hanada T, Cho M W, Yao T 2007 Appl. Phys. Lett. 90 201907

    [12]

    ]Chevtchenko S A, Moore J C, zgür , Gu X, Baski A A, Morko H, Nemeth B, Nause J E 2006 Appl. Phys. Lett. 89 182111

    [13]

    ]Segall M D, Lindan P J D, Probert M J 2002 J. Phys.: Condens. Matter 14 2717

    [14]

    ]Vanderbilt D 1990 Phys. Rev. B 41 789

    [15]

    ]Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [16]

    ]Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [17]

    ]Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [18]

    ]Karazhanov S Z, Ravindran P, Kjekshus A 2006 J. Appl. Phys. 100 043709

    [19]

    ]Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [20]

    ]Janotti A, Segev D, Van de Walle C G 2006 Phys. Rev. B 74 45202

    [21]

    ]Leontiev S A, Koshcheev S V, Devyatov V G, Cherkashin A E, Mikheeva E P 1997 J. Struct. Chem. 38 725

    [22]

    ]Schrer P, Krüger P, Pollmann J 1993 Phys. Rev. B 47 6971

    [23]

    ]Wagner M R, Haboeck U, Zimmer P, Hoffmann A, Lautenschlger S, Neumann C, Sann J, Meyer B K 2007 Proc. SPIE 6474 64740X

    [24]

    ]Bartel T P, Wagner M R, Haboeck U, Hoffmann A, Neumann C, Lautenschlger S, Sann J, Meyer B K 2008 Proc. SPIE 6895 689502

    [25]

    ]Mariano A N, Hanneman R E 1963 J. Appl. Phys. 34 384

  • [1] 胡小颖, 田宏伟, 宋立军, 朱品文, 乔靓. Li-N, Li-2N共掺p型ZnO的第一性原理研究. 物理学报, 2012, 61(4): 047102. doi: 10.7498/aps.61.047102
    [2] 杨春, 杨冲. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [3] 邓辉球, 胡望宇, 曾振华, 李微雪. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [4] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究. 物理学报, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [5] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [6] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究. 物理学报, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [7] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算. 物理学报, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [8] 姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛. 第一性原理研究Te-N共掺p型ZnO. 物理学报, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [9] 李万俊, 方亮, 秦国平, 阮海波, 孔春阳, 郑继, 卞萍, 徐庆, 吴芳. Ag-N共掺p型ZnO的第一性原理研究. 物理学报, 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [10] 陈立晶, 李维学, 戴剑锋, 王青. Mn-N共掺p型ZnO的第一性原理计算. 物理学报, 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [11] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究 . 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [12] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [13] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [14] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [15] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [16] 陈玉红, 杜瑞, 张致龙, 王伟超, 张材荣, 康龙, 罗永春. H2 分子在Li3N(110)表面吸附的第一性原理研究. 物理学报, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [17] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究. 物理学报, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [18] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [19] 罗华峰, 王藩侯, 袁娣, 黄多辉. Li, N双受主共掺杂实现p型ZnO的第一性原理研究. 物理学报, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [20] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究. 物理学报, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
  • 引用本文:
    Citation:
计量
  • 文章访问数:  4493
  • PDF下载量:  1599
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-29
  • 修回日期:  2010-01-15
  • 刊出日期:  2010-03-05

ZnO 极性表面及其N原子吸附机理的第一性原理研究

  • 1. 华南师范大学光电子材料与技术研究所,广州 510631
    基金项目: 

    广东省关键领域重点突破粤港合作计划(批准号: 2007A010501008)和高等学校博士学科点专项科研基金(批准号: 2007498351).

摘要: 基于密度泛函理论的第一性原理赝势法计算了ZnO极性表面的几何结构和电子结构特性,对比分析了ZnO(0001)和ZnO(0001)表面结构弛豫、能带结构、电子态密度及N吸附ZnO极性表面的形成能情况.计算结果表明: 相对于ZnO(0001)表面,ZnO(0001)表面受结构弛豫影响更加明显,而ZnO(0001)表面完整性更好.相对于体相ZnO结构,ZnO(0001)表面的能带带隙变窄,同时价带顶附近能级非局域性增强使晶体表面的导电性能变得更好;而ZnO(0001)表面的能带带隙变宽,由于O-

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回