搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧在Nb(110)表面吸附的第一性原理研究

房彩红 尚家香 刘增辉

氧在Nb(110)表面吸附的第一性原理研究

房彩红, 尚家香, 刘增辉
PDF
导出引用
导出核心图
  • 通过第一性原理赝势平面波方法研究了氧在Nb(110)表面的吸附性质随覆盖度变化规律. O在Nb(110)表面最稳定吸附位是洞位,次稳定吸附位是长桥位. 在长桥位吸附时, O诱导Nb(110)表面功函数随覆盖度的增加而几乎线性增加;但当O在洞位吸附时, 与干净Nb表面相比, 覆盖度为0.75 ML和1.0 ML时功函数增加, 而覆盖度为0.25 ML和0.5 ML时功函数减小.通过对面平均电荷密度分布和偶极矩变化的讨论, 解释了由吸附导致功函数复杂变化的原因.通过对表面原子结构和态密度分析, 讨论了O在Nb表面吸附时引起表面原子结构变化以及O和Nb(110)表面原子的相互作用.
    • 基金项目: 国家自然科学基金 (批准号: 51071011) 资助的课题.
    [1]

    Halbritter J 1987 Appl. Phys. A 43 1

    [2]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009 Chin. Phys. B 18 5044

    [3]

    Grundner M, Halbritter J 1980 J. Appl. Phys. 51 397

    [4]

    Chen Y, Shang J X, Zhang Y 2007 Phys. Rev. B 76 184204

    [5]

    Chen Y, Shang J X, Zhang Y 2007 J. Phys. Condens. Matters. 18 016215

    [6]

    Shang J X, Guan K, Wang F H 2010 J. Phys. Condens. Matters. 22 085004

    [7]

    Liu S Y, Shang J X, Wang F H, Liu S Y, Zhang Y, Xu H B 2009 Phys. Rev. B 80 085414

    [8]

    Geng J, Tsakiropoulos P 2007 Intermetallics 15 382

    [9]

    Geng J, Tsakiropoulos P, Shao G 2006 Mater. Sci. Eng. A 441 26

    [10]

    Liu G W 2010 Acta Phys. Sin. 59 0499 (in Chinese) [刘贵文 2010 物理学报 59 0499]

    [11]

    Liu G W, Yang J 2010 Acta Phys. Sin. 59 4939 (in Chinese) [刘贵文, 杨杰 2006 物理学报 59 4939]

    [12]

    Grundner M, Halbritter J 1984 Surf. Sci. 136 144

    [13]

    Arfaoui I, Cousty J, Guillot C 2004 Surf. Sci. 557 119

    [14]

    Arfaoui I, Cousty J, Safa H 2002 Phys. Rev. B 65 115413

    [15]

    Matsui F, Fujikado M, Daimon H, Sell B, Fadley C, Kobayashi A 2006 Czech. J. Phys. 56 61

    [16]

    Razinkin A, Shalaeva E, Kuznetsov M 2008 Bull. Russ. Acad. Sci. Phys. 72 1318

    [17]

    Sürgers C, Schok M, Loneysen H 2001 Surf. Sci. 471 209

    [18]

    Arfaoui I, Guillot C, Cousty J, Antoine C 2002 J. Appl. Phys. 91 9319

    [19]

    Pantel R, Bujor M, Bardolle J 1977 Surf. Sci. 62 589

    [20]

    Chocianowski P 1990 Vacuum 41 726

    [21]

    Lindau I, Spicer W E 1974 J. Appl. Phys. 45 3720

    [22]

    Franchy R, Bartke T U, Gassmann P 1996 Surf. Sci. 366 60

    [23]

    Wen M, An B, Fukuyama S, Yokogawa K 2009 Surf. Sci. 603 216

    [24]

    Kilimis D A, Lekka Ch E 2007 Mater. Sci. Eng. B 144 5

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Bengtsson L 1999 Phys. Rev. B 59 12301

    [28]

    Shein K, Shein I, Medvedeva N, Shalaeva E, Kuznetsov M, Ivanovskii A 2006 Phys. Met. Metallogr. 102 604

    [29]

    James W E, Rudolph S, Herrick L J 1951 J. Appl. Phys. 22 424

    [30]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [31]

    Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [32]

    Stampfl C, Scheffler M 1996 Phys. Rev. B 54 2868

    [33]

    Ganduglia-Pirovano M V, Scheffler M 1999 Phys. Rev. B 59 15533

    [34]

    Kiejna A, Lundqvist B I 2001 Phys. Rev. B 63 085405

    [35]

    Zeng Z H, Deng H Q, Li W X, 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]

    [36]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 {物理学报 58 1924]

    [37]

    Michaelides A, Hu P, Lee M H, Alavi A, King D A 2003 Phys. Rev. Lett. 90 246103

    [38]

    Hammer B, N?rskov J K, Bruce C, Gates H K 2000 Adv. Catal. 45 71

  • [1]

    Halbritter J 1987 Appl. Phys. A 43 1

    [2]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009 Chin. Phys. B 18 5044

    [3]

    Grundner M, Halbritter J 1980 J. Appl. Phys. 51 397

    [4]

    Chen Y, Shang J X, Zhang Y 2007 Phys. Rev. B 76 184204

    [5]

    Chen Y, Shang J X, Zhang Y 2007 J. Phys. Condens. Matters. 18 016215

    [6]

    Shang J X, Guan K, Wang F H 2010 J. Phys. Condens. Matters. 22 085004

    [7]

    Liu S Y, Shang J X, Wang F H, Liu S Y, Zhang Y, Xu H B 2009 Phys. Rev. B 80 085414

    [8]

    Geng J, Tsakiropoulos P 2007 Intermetallics 15 382

    [9]

    Geng J, Tsakiropoulos P, Shao G 2006 Mater. Sci. Eng. A 441 26

    [10]

    Liu G W 2010 Acta Phys. Sin. 59 0499 (in Chinese) [刘贵文 2010 物理学报 59 0499]

    [11]

    Liu G W, Yang J 2010 Acta Phys. Sin. 59 4939 (in Chinese) [刘贵文, 杨杰 2006 物理学报 59 4939]

    [12]

    Grundner M, Halbritter J 1984 Surf. Sci. 136 144

    [13]

    Arfaoui I, Cousty J, Guillot C 2004 Surf. Sci. 557 119

    [14]

    Arfaoui I, Cousty J, Safa H 2002 Phys. Rev. B 65 115413

    [15]

    Matsui F, Fujikado M, Daimon H, Sell B, Fadley C, Kobayashi A 2006 Czech. J. Phys. 56 61

    [16]

    Razinkin A, Shalaeva E, Kuznetsov M 2008 Bull. Russ. Acad. Sci. Phys. 72 1318

    [17]

    Sürgers C, Schok M, Loneysen H 2001 Surf. Sci. 471 209

    [18]

    Arfaoui I, Guillot C, Cousty J, Antoine C 2002 J. Appl. Phys. 91 9319

    [19]

    Pantel R, Bujor M, Bardolle J 1977 Surf. Sci. 62 589

    [20]

    Chocianowski P 1990 Vacuum 41 726

    [21]

    Lindau I, Spicer W E 1974 J. Appl. Phys. 45 3720

    [22]

    Franchy R, Bartke T U, Gassmann P 1996 Surf. Sci. 366 60

    [23]

    Wen M, An B, Fukuyama S, Yokogawa K 2009 Surf. Sci. 603 216

    [24]

    Kilimis D A, Lekka Ch E 2007 Mater. Sci. Eng. B 144 5

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Bengtsson L 1999 Phys. Rev. B 59 12301

    [28]

    Shein K, Shein I, Medvedeva N, Shalaeva E, Kuznetsov M, Ivanovskii A 2006 Phys. Met. Metallogr. 102 604

    [29]

    James W E, Rudolph S, Herrick L J 1951 J. Appl. Phys. 22 424

    [30]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [31]

    Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [32]

    Stampfl C, Scheffler M 1996 Phys. Rev. B 54 2868

    [33]

    Ganduglia-Pirovano M V, Scheffler M 1999 Phys. Rev. B 59 15533

    [34]

    Kiejna A, Lundqvist B I 2001 Phys. Rev. B 63 085405

    [35]

    Zeng Z H, Deng H Q, Li W X, 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]

    [36]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 {物理学报 58 1924]

    [37]

    Michaelides A, Hu P, Lee M H, Alavi A, King D A 2003 Phys. Rev. Lett. 90 246103

    [38]

    Hammer B, N?rskov J K, Bruce C, Gates H K 2000 Adv. Catal. 45 71

  • [1] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [2] 王芒芒, 宁华, 陶向明, 谭明秋. Au(110)表面结构和氧原子吸附的第一性原理研究. 物理学报, 2011, 60(4): 047301. doi: 10.7498/aps.60.047301
    [3] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [4] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖. GaN(0001)表面电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [5] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [6] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [7] 宋红州, 张 平, 赵宪庚. 原子氢在Be(1010)薄膜上吸附的第一性原理计算. 物理学报, 2006, 55(11): 6025-6031. doi: 10.7498/aps.55.6025
    [8] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [9] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [10] 宋红州, 张 平, 赵宪庚. Be(0001)薄膜中的量子尺寸效应与吸附氢的第一性原理计算. 物理学报, 2007, 56(1): 465-473. doi: 10.7498/aps.56.465
    [11] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [12] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究. 物理学报, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [13] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究. 物理学报, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
    [14] 陈玉红, 杜瑞, 张致龙, 王伟超, 张材荣, 康龙, 罗永春. H2 分子在Li3N(110)表面吸附的第一性原理研究. 物理学报, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [15] 杨春, 杨冲. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [16] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算. 物理学报, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [17] 陈玉红, 曹一杰, 任宝兴. Ti原子在Al(110)表面吸氢过程中催化作用的第一性原理研究. 物理学报, 2010, 59(11): 8015-8020. doi: 10.7498/aps.59.8015
    [18] 房丽敏. SrTiO3(001)表面上Au和N原子相互作用的第一性原理研究. 物理学报, 2011, 60(5): 056801. doi: 10.7498/aps.60.056801
    [19] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [20] 王涛, 陈建峰, 乐园. I掺杂金红石TiO2(110)面的第一性原理研究. 物理学报, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1913
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-22
  • 修回日期:  2011-06-21
  • 刊出日期:  2012-02-05

氧在Nb(110)表面吸附的第一性原理研究

  • 1. 北京航空航天大学材料科学与工程学院, 北京 100191
    基金项目: 

    国家自然科学基金 (批准号: 51071011) 资助的课题.

摘要: 通过第一性原理赝势平面波方法研究了氧在Nb(110)表面的吸附性质随覆盖度变化规律. O在Nb(110)表面最稳定吸附位是洞位,次稳定吸附位是长桥位. 在长桥位吸附时, O诱导Nb(110)表面功函数随覆盖度的增加而几乎线性增加;但当O在洞位吸附时, 与干净Nb表面相比, 覆盖度为0.75 ML和1.0 ML时功函数增加, 而覆盖度为0.25 ML和0.5 ML时功函数减小.通过对面平均电荷密度分布和偶极矩变化的讨论, 解释了由吸附导致功函数复杂变化的原因.通过对表面原子结构和态密度分析, 讨论了O在Nb表面吸附时引起表面原子结构变化以及O和Nb(110)表面原子的相互作用.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回