-
为了研究给定的NiTi的表面氧化过程,在保持体系中Ni和Ti原子总数相等的条件下,构建了一系列Ti原子在表面反位的c(22)-NiTi(110)缺陷体系,并利用第一性原理计算研究了氧原子在各种NiTi(110)反位缺陷体系的吸附行为以及表面形成能.计算结果表明:吸附氧原子的稳定性与表面Ti原子的富集程度有很大的关联性,体系表面Ti原子富集程度越高,氧原子吸附的稳定性越高;当覆盖度较高时,由于氧原子的吸附,可使Ni和Ti原子在表面出现反位.在富氧条件(O -9.35 eV)下,氧原子在表面第1层中的全部Ni原子与第3层全部Ti换位的反位缺陷体系上的吸附最稳定,此时随着氧原子的吸附,表面上的Ti原子升高,导致向上膨胀生长形成二氧化钛层,且在其下方形成富Ni层,由此可合理地解释实验上发现NiTi合金氧化形成二氧化钛层的可能原因.
[1] Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103 (in Chinese) [马蕾, 王旭, 尚家香 2014 物理学报 63 233103]
[2] Wu H L, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794 (in Chinese) [吴红丽, 赵新青, 宫声凯 2008 物理学报 57 7794]
[3] Geng F, Shi P, Yang D Z 2005 J. Funct. Mater. 36 11 (in Chinese) [耿芳, 石萍, 杨大智 2005 功能材料 36 11]
[4] Wang Y X, Zhang X N, Sun K 2006 Chin. J. Rare Metals 30 385 (in Chinese) [王蕴贤, 张小农, 孙康 2006 稀有金属 30 385]
[5] Starosvetsky D, Gotman I 2001 Biomaterials 22 1853
[6] Li Y, Zhao T, Wei S, Xiang Y, Chen H 2010 Mater. Sci. Eng. C 30 1227
[7] Tan L, Dodd R A, Crone W C 2003 Biomaterials 24 3931
[8] Zhao T, Li Y, Xiang Y, Xiang Y, Zhao X, Zhang T 2011 Surf. Coat. Technol. 205 4404
[9] Mndl S, Lindner J K N 2006 Nucl. Instr. Meth. Phys. Res. B 249 355
[10] Lutz J, Lindner J K N, Mndl S 2008 Appl. Surf. Sci. 255 1107
[11] Bernard S A, Balla V K, Davies N M, Bose S, Bandyopadhyay A 2011 Acta Biomater. 7 1902
[12] Hassel A W, Neelakantan L, Zelenkevych A, Ruh A 2008 Corros. Sci. 50 1368
[13] Sun T, Wang M, Lee W C 2011 Mater. Chem. Phys. 130 45
[14] Firstov G S, Vitchev R G, Kumar B, Blanpain B, Humbeeck J V 2002 Biomaterials 23 4863
[15] Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Biomaterials 26 6916
[16] Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Appl. Surf. Sci. 252 2038
[17] Undisz A, Schrempel F, Wesch W, Rettenmayr M 2012 J. Biomed. Mater. Res. 100A 1743
[18] Chu C L, Wu S K, Yen Y C 1996 Mater. Sci. Eng. A 216 193
[19] Nolan M, Tofail S A M 2010 Biomaterials 31 3439
[20] Nigussa K N, Stvneg J A 2010 Phys. Rev. B 82 245401
[21] Liu X, Guo H M, Meng C G 2012 J. Phys. Chem. C 116 21771
[22] Li Y C, Wang F H, Shang J X 2016 Corros. Sci. 106 137
[23] Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624
[24] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[25] Blchl P E 1994 Phys. Rev. B 50 17953
[26] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4972
[27] Zhang C, Farhat Z N 2009 Wear 267 394
[28] Diebold U 2003 Surf. Sci. Rep. 48 53
[29] Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112
[30] Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406
[31] Bergermayer W, Schweiger H, Wimmer E 2004 Phys. Rev. B 69 195409
[32] Liu K, Wang F H 2016 Mater. Protect. 49 65 (in Chinese) [刘坤, 王福合 2016 材料防护 49 65]
-
[1] Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103 (in Chinese) [马蕾, 王旭, 尚家香 2014 物理学报 63 233103]
[2] Wu H L, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794 (in Chinese) [吴红丽, 赵新青, 宫声凯 2008 物理学报 57 7794]
[3] Geng F, Shi P, Yang D Z 2005 J. Funct. Mater. 36 11 (in Chinese) [耿芳, 石萍, 杨大智 2005 功能材料 36 11]
[4] Wang Y X, Zhang X N, Sun K 2006 Chin. J. Rare Metals 30 385 (in Chinese) [王蕴贤, 张小农, 孙康 2006 稀有金属 30 385]
[5] Starosvetsky D, Gotman I 2001 Biomaterials 22 1853
[6] Li Y, Zhao T, Wei S, Xiang Y, Chen H 2010 Mater. Sci. Eng. C 30 1227
[7] Tan L, Dodd R A, Crone W C 2003 Biomaterials 24 3931
[8] Zhao T, Li Y, Xiang Y, Xiang Y, Zhao X, Zhang T 2011 Surf. Coat. Technol. 205 4404
[9] Mndl S, Lindner J K N 2006 Nucl. Instr. Meth. Phys. Res. B 249 355
[10] Lutz J, Lindner J K N, Mndl S 2008 Appl. Surf. Sci. 255 1107
[11] Bernard S A, Balla V K, Davies N M, Bose S, Bandyopadhyay A 2011 Acta Biomater. 7 1902
[12] Hassel A W, Neelakantan L, Zelenkevych A, Ruh A 2008 Corros. Sci. 50 1368
[13] Sun T, Wang M, Lee W C 2011 Mater. Chem. Phys. 130 45
[14] Firstov G S, Vitchev R G, Kumar B, Blanpain B, Humbeeck J V 2002 Biomaterials 23 4863
[15] Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Biomaterials 26 6916
[16] Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Appl. Surf. Sci. 252 2038
[17] Undisz A, Schrempel F, Wesch W, Rettenmayr M 2012 J. Biomed. Mater. Res. 100A 1743
[18] Chu C L, Wu S K, Yen Y C 1996 Mater. Sci. Eng. A 216 193
[19] Nolan M, Tofail S A M 2010 Biomaterials 31 3439
[20] Nigussa K N, Stvneg J A 2010 Phys. Rev. B 82 245401
[21] Liu X, Guo H M, Meng C G 2012 J. Phys. Chem. C 116 21771
[22] Li Y C, Wang F H, Shang J X 2016 Corros. Sci. 106 137
[23] Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624
[24] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[25] Blchl P E 1994 Phys. Rev. B 50 17953
[26] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4972
[27] Zhang C, Farhat Z N 2009 Wear 267 394
[28] Diebold U 2003 Surf. Sci. Rep. 48 53
[29] Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112
[30] Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406
[31] Bergermayer W, Schweiger H, Wimmer E 2004 Phys. Rev. B 69 195409
[32] Liu K, Wang F H 2016 Mater. Protect. 49 65 (in Chinese) [刘坤, 王福合 2016 材料防护 49 65]
引用本文: |
Citation: |
计量
- 文章访问数: 1283
- PDF下载量: 152
- 被引次数: 0