搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiTi(110)表面氧原子吸附的第一性原理研究

刘坤 王福合 尚家香

NiTi(110)表面氧原子吸附的第一性原理研究

刘坤, 王福合, 尚家香
PDF
导出引用
导出核心图
  • 为了研究给定的NiTi的表面氧化过程,在保持体系中Ni和Ti原子总数相等的条件下,构建了一系列Ti原子在表面反位的c(22)-NiTi(110)缺陷体系,并利用第一性原理计算研究了氧原子在各种NiTi(110)反位缺陷体系的吸附行为以及表面形成能.计算结果表明:吸附氧原子的稳定性与表面Ti原子的富集程度有很大的关联性,体系表面Ti原子富集程度越高,氧原子吸附的稳定性越高;当覆盖度较高时,由于氧原子的吸附,可使Ni和Ti原子在表面出现反位.在富氧条件(O -9.35 eV)下,氧原子在表面第1层中的全部Ni原子与第3层全部Ti换位的反位缺陷体系上的吸附最稳定,此时随着氧原子的吸附,表面上的Ti原子升高,导致向上膨胀生长形成二氧化钛层,且在其下方形成富Ni层,由此可合理地解释实验上发现NiTi合金氧化形成二氧化钛层的可能原因.
      通信作者: 王福合, wfh-phy@cnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51371017)资助的课题.
    [1]

    Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103 (in Chinese) [马蕾, 王旭, 尚家香 2014 物理学报 63 233103]

    [2]

    Wu H L, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794 (in Chinese) [吴红丽, 赵新青, 宫声凯 2008 物理学报 57 7794]

    [3]

    Geng F, Shi P, Yang D Z 2005 J. Funct. Mater. 36 11 (in Chinese) [耿芳, 石萍, 杨大智 2005 功能材料 36 11]

    [4]

    Wang Y X, Zhang X N, Sun K 2006 Chin. J. Rare Metals 30 385 (in Chinese) [王蕴贤, 张小农, 孙康 2006 稀有金属 30 385]

    [5]

    Starosvetsky D, Gotman I 2001 Biomaterials 22 1853

    [6]

    Li Y, Zhao T, Wei S, Xiang Y, Chen H 2010 Mater. Sci. Eng. C 30 1227

    [7]

    Tan L, Dodd R A, Crone W C 2003 Biomaterials 24 3931

    [8]

    Zhao T, Li Y, Xiang Y, Xiang Y, Zhao X, Zhang T 2011 Surf. Coat. Technol. 205 4404

    [9]

    Mndl S, Lindner J K N 2006 Nucl. Instr. Meth. Phys. Res. B 249 355

    [10]

    Lutz J, Lindner J K N, Mndl S 2008 Appl. Surf. Sci. 255 1107

    [11]

    Bernard S A, Balla V K, Davies N M, Bose S, Bandyopadhyay A 2011 Acta Biomater. 7 1902

    [12]

    Hassel A W, Neelakantan L, Zelenkevych A, Ruh A 2008 Corros. Sci. 50 1368

    [13]

    Sun T, Wang M, Lee W C 2011 Mater. Chem. Phys. 130 45

    [14]

    Firstov G S, Vitchev R G, Kumar B, Blanpain B, Humbeeck J V 2002 Biomaterials 23 4863

    [15]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Biomaterials 26 6916

    [16]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Appl. Surf. Sci. 252 2038

    [17]

    Undisz A, Schrempel F, Wesch W, Rettenmayr M 2012 J. Biomed. Mater. Res. 100A 1743

    [18]

    Chu C L, Wu S K, Yen Y C 1996 Mater. Sci. Eng. A 216 193

    [19]

    Nolan M, Tofail S A M 2010 Biomaterials 31 3439

    [20]

    Nigussa K N, Stvneg J A 2010 Phys. Rev. B 82 245401

    [21]

    Liu X, Guo H M, Meng C G 2012 J. Phys. Chem. C 116 21771

    [22]

    Li Y C, Wang F H, Shang J X 2016 Corros. Sci. 106 137

    [23]

    Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4972

    [27]

    Zhang C, Farhat Z N 2009 Wear 267 394

    [28]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [29]

    Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112

    [30]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406

    [31]

    Bergermayer W, Schweiger H, Wimmer E 2004 Phys. Rev. B 69 195409

    [32]

    Liu K, Wang F H 2016 Mater. Protect. 49 65 (in Chinese) [刘坤, 王福合 2016 材料防护 49 65]

  • [1]

    Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103 (in Chinese) [马蕾, 王旭, 尚家香 2014 物理学报 63 233103]

    [2]

    Wu H L, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794 (in Chinese) [吴红丽, 赵新青, 宫声凯 2008 物理学报 57 7794]

    [3]

    Geng F, Shi P, Yang D Z 2005 J. Funct. Mater. 36 11 (in Chinese) [耿芳, 石萍, 杨大智 2005 功能材料 36 11]

    [4]

    Wang Y X, Zhang X N, Sun K 2006 Chin. J. Rare Metals 30 385 (in Chinese) [王蕴贤, 张小农, 孙康 2006 稀有金属 30 385]

    [5]

    Starosvetsky D, Gotman I 2001 Biomaterials 22 1853

    [6]

    Li Y, Zhao T, Wei S, Xiang Y, Chen H 2010 Mater. Sci. Eng. C 30 1227

    [7]

    Tan L, Dodd R A, Crone W C 2003 Biomaterials 24 3931

    [8]

    Zhao T, Li Y, Xiang Y, Xiang Y, Zhao X, Zhang T 2011 Surf. Coat. Technol. 205 4404

    [9]

    Mndl S, Lindner J K N 2006 Nucl. Instr. Meth. Phys. Res. B 249 355

    [10]

    Lutz J, Lindner J K N, Mndl S 2008 Appl. Surf. Sci. 255 1107

    [11]

    Bernard S A, Balla V K, Davies N M, Bose S, Bandyopadhyay A 2011 Acta Biomater. 7 1902

    [12]

    Hassel A W, Neelakantan L, Zelenkevych A, Ruh A 2008 Corros. Sci. 50 1368

    [13]

    Sun T, Wang M, Lee W C 2011 Mater. Chem. Phys. 130 45

    [14]

    Firstov G S, Vitchev R G, Kumar B, Blanpain B, Humbeeck J V 2002 Biomaterials 23 4863

    [15]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Biomaterials 26 6916

    [16]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Appl. Surf. Sci. 252 2038

    [17]

    Undisz A, Schrempel F, Wesch W, Rettenmayr M 2012 J. Biomed. Mater. Res. 100A 1743

    [18]

    Chu C L, Wu S K, Yen Y C 1996 Mater. Sci. Eng. A 216 193

    [19]

    Nolan M, Tofail S A M 2010 Biomaterials 31 3439

    [20]

    Nigussa K N, Stvneg J A 2010 Phys. Rev. B 82 245401

    [21]

    Liu X, Guo H M, Meng C G 2012 J. Phys. Chem. C 116 21771

    [22]

    Li Y C, Wang F H, Shang J X 2016 Corros. Sci. 106 137

    [23]

    Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4972

    [27]

    Zhang C, Farhat Z N 2009 Wear 267 394

    [28]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [29]

    Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112

    [30]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406

    [31]

    Bergermayer W, Schweiger H, Wimmer E 2004 Phys. Rev. B 69 195409

    [32]

    Liu K, Wang F H 2016 Mater. Protect. 49 65 (in Chinese) [刘坤, 王福合 2016 材料防护 49 65]

  • [1] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究. 物理学报, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [2] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [3] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究. 物理学报, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [4] 李宗宝, 王霞, 周瑞雪, 王应, 李勇. Cu-Ag协同表面改性TiO2的第一性原理研究. 物理学报, 2017, 66(11): 117101. doi: 10.7498/aps.66.117101
    [5] 舒瑜, 张研, 张建民. Cu 表面性质的第一性原理分析. 物理学报, 2012, 61(1): 016108. doi: 10.7498/aps.61.016108
    [6] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [7] 黄 晋, 孙其诚. 一维液态泡沫渗流实验研究及表面能和粘性耗散分析. 物理学报, 2007, 56(10): 6124-6131. doi: 10.7498/aps.56.6124
    [8] 李天晶, 李公平, 马俊平, 高行新. 钴离子注入对二氧化钛晶体的结构和光学性能的影响. 物理学报, 2011, 60(11): 116102. doi: 10.7498/aps.60.116102
    [9] 刘常升, 李永华, 朱建新, 郑伟涛, 王煜明, 孟繁玲. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [10] 董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献. Ni与钇稳定的氧化锆(111)表面相互作用以及界面活性的第一性原理研究. 物理学报, 2016, 65(6): 068201. doi: 10.7498/aps.65.068201
    [11] 汪 洋, 孟 亮. TiO2表面氧空位对NO分子吸附的作用. 物理学报, 2005, 54(5): 2207-2211. doi: 10.7498/aps.54.2207
    [12] 郑树文, 范广涵, 张涛, 苏晨, 宋晶晶, 丁彬彬. 纤锌矿BexZn1-xO合金能隙弯曲系数的第一原理研究. 物理学报, 2013, 62(3): 037102. doi: 10.7498/aps.62.037102
    [13] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究. 物理学报, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [14] 江学范, 全宏瑞, 罗礼进, 仲崇贵, 谭志中, 蒋青. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [15] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [16] 丁俊, 文黎巍, 王玉梅, 裴慧霞. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [17] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究. 物理学报, 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [18] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [19] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [20] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
  • 引用本文:
    Citation:
计量
  • 文章访问数:  549
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-29
  • 修回日期:  2017-07-26
  • 刊出日期:  2017-11-05

NiTi(110)表面氧原子吸附的第一性原理研究

  • 1. 首都师范大学物理系, 北京 100048;
  • 2. 北京航空航天大学材料科学与工程学院, 北京 100191
  • 通信作者: 王福合, wfh-phy@cnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51371017)资助的课题.

摘要: 为了研究给定的NiTi的表面氧化过程,在保持体系中Ni和Ti原子总数相等的条件下,构建了一系列Ti原子在表面反位的c(22)-NiTi(110)缺陷体系,并利用第一性原理计算研究了氧原子在各种NiTi(110)反位缺陷体系的吸附行为以及表面形成能.计算结果表明:吸附氧原子的稳定性与表面Ti原子的富集程度有很大的关联性,体系表面Ti原子富集程度越高,氧原子吸附的稳定性越高;当覆盖度较高时,由于氧原子的吸附,可使Ni和Ti原子在表面出现反位.在富氧条件(O -9.35 eV)下,氧原子在表面第1层中的全部Ni原子与第3层全部Ti换位的反位缺陷体系上的吸附最稳定,此时随着氧原子的吸附,表面上的Ti原子升高,导致向上膨胀生长形成二氧化钛层,且在其下方形成富Ni层,由此可合理地解释实验上发现NiTi合金氧化形成二氧化钛层的可能原因.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回