搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三氧化钨表面氢吸附机理的第一性原理研究

姜平国 汪正兵 闫永播

三氧化钨表面氢吸附机理的第一性原理研究

姜平国, 汪正兵, 闫永播
PDF
导出引用
导出核心图
  • 采用基于密度泛函理论的第一性原理平面波超软赝势方法,在广义梯度近似下,研究了立方WO3,WO3(001)表面结构及其氢吸附机理. 计算结果表明立方晶体WO3理论带隙宽度为0.587 eV. WO3(001)表面有WO终止(001)表面和O终止(001)表面两种结构,表面结构优化后W-O键长和W-O-W键角改变,从而实现表面弛豫;WO终止(001)表面和O终止(001) 表面分别呈现n型半导体特征和p型半导体特征. 分别计算了H原子吸附在WO终止(001)表面和O终止(001)表面的H-O2c-H,H-O2cH-O2c,H-O1c-H 和H-O1cH-O1c四种吸附构型,其中H-O1c-H 吸附构型的吸附能最小,H-O 键最短,H失去电子数最多,分别为-3.684 eV,0.0968 nm和0.55e,此吸附构型最稳定. 分析其吸附前后的态密度,带隙从吸附前的0.624 eV 增加到1.004 eV,价带宽度基本不变. H的1s轨道电子与O 的2p,2s轨道电子相互作用,在-8和-20 eV附近各形成了一个较强的孤立电子峰,两个H原子分别与一个O1c原子形成化学键,最终吸附反应生成了一个H2O分子,同时产生了一个表面氧空位.
      通信作者: 姜平国, pingguo_jiang@163.com
    • 基金项目: 国家自然科学基金(批准号:51564016)和江西省自然科学基金(批准号:20151BAB206029) 资助的课题.
    [1]

    Yang Y H, Xie R R, Li H, Liu C J, Liu W H, Zhan F Q 2016 Trans. Nonferrous Met. Soc. China 26 2390

    [2]

    Chen Z, Wang W, Zhu K G 2015 Acta Metall. Sin. 28 1

    [3]

    Dai F P, L S Y, Feng B X, Jiang S R, Chen C 2003 Acta Phys. Sin. 52 1003 (in Chinese) [代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈冲 2003 物理学报 52 1003]

    [4]

    Kukkola J, Mklin J, Halonen N, Kyllnen T, Tth G, Szab M, Shchukarev A, Mikkola J P, Jantunen H, Kords K 2011 Sensor. Actuat. B 153 293

    [5]

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201 (in Chinese) [方成, 汪洪, 施思齐 2016 物理学报 65 168201]

    [6]

    Zhang T, Zhu Z L, Chen H N, Bai Y, Xiao S, Zheng X L, Xue Q Z, Yang S H 2015 Nanoscale 7 2933

    [7]

    Liu X H, Zhou Y, Liang F Y, Qu H N, Wen H R 2015 Nonferrous Met. Sci. Eng. 6 53 (in Chinese) [刘喜慧, 周阳, 梁福永, 曲慧男, 温和瑞 2015 有色金属科学与工程 6 53]

    [8]

    Qin Y X, Liu C Y, Liu Y 2015 Chin. Phys. B 24 027304

    [9]

    Zhang F, Wang H Q, Wang S, Wang J Y, Zhong Z C, Jin Y 2014 Chin. Phys. B 23 098105

    [10]

    Vesel A, Mozetič M, Balat-Pichelin M 2015 Thin Solid Films 591 174

    [11]

    Guo F 2007 Mat. Sci. Eng. Powder Metall. 12 205 (in Chinese) [郭峰 2007 粉末冶金材料科学与工程 12 205]

    [12]

    Li H G, Yang J G, Li K 2010 Tungsten Metallurgy (Changsha: Central South University Press) pp36-39 (in Chinese) [李洪桂, 羊建高, 李昆 2010 钨冶金学 (长沙: 中南大学出版社) 第36-39页]

    [13]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 物理学报 61 040702]

    [14]

    Qiu K Q, Wang A M, Zhang H F, Qiao D C, Ding B Z, Hu Z Q 2002 Acta Metall. Sin. 38 1091 (in Chinese) [邱克强, 王爱民, 张海峰, 乔东春, 丁炳哲, 胡壮麒 2002 金属学报 38 1091]

    [15]

    Hua J S, Jing F Q, Dong Y B, Tan H, Shen Z Y, Zhou X M, Hu S L 2003 Acta Phys. Sin. 52 2005 (in Chinese) [华劲松, 经福谦, 董玉斌, 谭华, 沈中毅, 周显明, 胡绍楼 2003 物理学报 52 2005]

    [16]

    Tan J, Zhou Z J, Zhu X P, Guo S Q, Qu D D, Lei M K, Ge C C 2012 Trans. Nonferrous Met. Soc. China 22 1081

    [17]

    Liu H M, Fan J L, Tian J M, You F 2009 China Tungsten Ind. 24 29 (in Chinese) [刘辉明, 范景莲, 田家敏, 游峰 2009 中国钨业 24 29]

    [18]

    Hessel S, Shpigler B, Botstein O 1993 Rev. Chem. Eng. 9 345

    [19]

    Wu X W, Luo J S, Lu B Z, Xie C H, Pi Z M, Hu M Z, Xu T, Wu G G, Yu Z M, Yi D Q 2009 Trans. Nonferrous Met. Soc. China 19 785

    [20]

    Xu L, Yan Q Z, Xia M, Zhu L X 2013 Int. J. Refract. Met. Hard Mater. 36 238

    [21]

    Yu Y X 2013 Phys. Chem. Chem. Phys. 15 16819

    [22]

    Yu Y X 2016 J. Phys. Chem. C 120 5288

    [23]

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301]

    [24]

    Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301 (in Chinese) [薛丽, 任一鸣 2016 物理学报 65 156301]

    [25]

    Yu Y X 2014 ACS Appl. Mater. Interfaces 6 16267

    [26]

    Li B, Wu T Q, Wang C C, Jiang Y 2016 Acta Phys. Sin. 65 216301 (in Chinese) [李白, 吴太权, 汪辰超, 江影 2016 物理学报 65 216301]

    [27]

    Gholizadeh R, Yu Y X 2015 Appl. Surf. Sci. 357 1187

    [28]

    Chatten R, Chadwick A V, Rougier A, Lindan P J D 2005 J. Phys. Chem. B 109 3146

    [29]

    Yakovkin I N, Gutowski M 2007 Surf. Sci. 601 1481

    [30]

    Tanner R E, Meethunkij P, Altman E I 2000 J. Phys. Chem. B 104 12315

    [31]

    Ma S, Frederick B G 2003 J. Phys. Chem. B 107 11960

    [32]

    Tian X G, Zhang Y, Yang T S 2012 J. Syn. Cryst. 41 323 (in Chinese) [田相桂, 张跃, 杨泰生 2012 人工晶体学报 41 323]

    [33]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [34]

    Wang Y, Perdew J P, Chevary J A, Macdonald L D, Vosko S H 1990 Phys. Rev. A 41 40

    [35]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [37]

    Fletcher R 1970 Comput. J. 13 317

    [38]

    Tian X G, Zhang Y, Yang T S 2012 Acta Phys. Chim. Sin. 28 1063

    [39]

    Yamaguchi O, Tomihisa D, Kawabata H, Shimizu K 1987 J. Am. Ceram. Soc. 70 94

    [40]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299

    [41]

    Sun X, Kurahashi M, Pratt A, Yamauchi Y 2011 Sur. Sci. 605 1067

  • [1]

    Yang Y H, Xie R R, Li H, Liu C J, Liu W H, Zhan F Q 2016 Trans. Nonferrous Met. Soc. China 26 2390

    [2]

    Chen Z, Wang W, Zhu K G 2015 Acta Metall. Sin. 28 1

    [3]

    Dai F P, L S Y, Feng B X, Jiang S R, Chen C 2003 Acta Phys. Sin. 52 1003 (in Chinese) [代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈冲 2003 物理学报 52 1003]

    [4]

    Kukkola J, Mklin J, Halonen N, Kyllnen T, Tth G, Szab M, Shchukarev A, Mikkola J P, Jantunen H, Kords K 2011 Sensor. Actuat. B 153 293

    [5]

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201 (in Chinese) [方成, 汪洪, 施思齐 2016 物理学报 65 168201]

    [6]

    Zhang T, Zhu Z L, Chen H N, Bai Y, Xiao S, Zheng X L, Xue Q Z, Yang S H 2015 Nanoscale 7 2933

    [7]

    Liu X H, Zhou Y, Liang F Y, Qu H N, Wen H R 2015 Nonferrous Met. Sci. Eng. 6 53 (in Chinese) [刘喜慧, 周阳, 梁福永, 曲慧男, 温和瑞 2015 有色金属科学与工程 6 53]

    [8]

    Qin Y X, Liu C Y, Liu Y 2015 Chin. Phys. B 24 027304

    [9]

    Zhang F, Wang H Q, Wang S, Wang J Y, Zhong Z C, Jin Y 2014 Chin. Phys. B 23 098105

    [10]

    Vesel A, Mozetič M, Balat-Pichelin M 2015 Thin Solid Films 591 174

    [11]

    Guo F 2007 Mat. Sci. Eng. Powder Metall. 12 205 (in Chinese) [郭峰 2007 粉末冶金材料科学与工程 12 205]

    [12]

    Li H G, Yang J G, Li K 2010 Tungsten Metallurgy (Changsha: Central South University Press) pp36-39 (in Chinese) [李洪桂, 羊建高, 李昆 2010 钨冶金学 (长沙: 中南大学出版社) 第36-39页]

    [13]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 物理学报 61 040702]

    [14]

    Qiu K Q, Wang A M, Zhang H F, Qiao D C, Ding B Z, Hu Z Q 2002 Acta Metall. Sin. 38 1091 (in Chinese) [邱克强, 王爱民, 张海峰, 乔东春, 丁炳哲, 胡壮麒 2002 金属学报 38 1091]

    [15]

    Hua J S, Jing F Q, Dong Y B, Tan H, Shen Z Y, Zhou X M, Hu S L 2003 Acta Phys. Sin. 52 2005 (in Chinese) [华劲松, 经福谦, 董玉斌, 谭华, 沈中毅, 周显明, 胡绍楼 2003 物理学报 52 2005]

    [16]

    Tan J, Zhou Z J, Zhu X P, Guo S Q, Qu D D, Lei M K, Ge C C 2012 Trans. Nonferrous Met. Soc. China 22 1081

    [17]

    Liu H M, Fan J L, Tian J M, You F 2009 China Tungsten Ind. 24 29 (in Chinese) [刘辉明, 范景莲, 田家敏, 游峰 2009 中国钨业 24 29]

    [18]

    Hessel S, Shpigler B, Botstein O 1993 Rev. Chem. Eng. 9 345

    [19]

    Wu X W, Luo J S, Lu B Z, Xie C H, Pi Z M, Hu M Z, Xu T, Wu G G, Yu Z M, Yi D Q 2009 Trans. Nonferrous Met. Soc. China 19 785

    [20]

    Xu L, Yan Q Z, Xia M, Zhu L X 2013 Int. J. Refract. Met. Hard Mater. 36 238

    [21]

    Yu Y X 2013 Phys. Chem. Chem. Phys. 15 16819

    [22]

    Yu Y X 2016 J. Phys. Chem. C 120 5288

    [23]

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301]

    [24]

    Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301 (in Chinese) [薛丽, 任一鸣 2016 物理学报 65 156301]

    [25]

    Yu Y X 2014 ACS Appl. Mater. Interfaces 6 16267

    [26]

    Li B, Wu T Q, Wang C C, Jiang Y 2016 Acta Phys. Sin. 65 216301 (in Chinese) [李白, 吴太权, 汪辰超, 江影 2016 物理学报 65 216301]

    [27]

    Gholizadeh R, Yu Y X 2015 Appl. Surf. Sci. 357 1187

    [28]

    Chatten R, Chadwick A V, Rougier A, Lindan P J D 2005 J. Phys. Chem. B 109 3146

    [29]

    Yakovkin I N, Gutowski M 2007 Surf. Sci. 601 1481

    [30]

    Tanner R E, Meethunkij P, Altman E I 2000 J. Phys. Chem. B 104 12315

    [31]

    Ma S, Frederick B G 2003 J. Phys. Chem. B 107 11960

    [32]

    Tian X G, Zhang Y, Yang T S 2012 J. Syn. Cryst. 41 323 (in Chinese) [田相桂, 张跃, 杨泰生 2012 人工晶体学报 41 323]

    [33]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [34]

    Wang Y, Perdew J P, Chevary J A, Macdonald L D, Vosko S H 1990 Phys. Rev. A 41 40

    [35]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [37]

    Fletcher R 1970 Comput. J. 13 317

    [38]

    Tian X G, Zhang Y, Yang T S 2012 Acta Phys. Chim. Sin. 28 1063

    [39]

    Yamaguchi O, Tomihisa D, Kawabata H, Shimizu K 1987 J. Am. Ceram. Soc. 70 94

    [40]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299

    [41]

    Sun X, Kurahashi M, Pratt A, Yamauchi Y 2011 Sur. Sci. 605 1067

  • [1] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [3] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [4] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [5] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [6] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [7] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [8] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [9] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • 引用本文:
    Citation:
计量
  • 文章访问数:  368
  • PDF下载量:  373
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 修回日期:  2017-01-14
  • 刊出日期:  2017-04-20

三氧化钨表面氢吸附机理的第一性原理研究

  • 1. 江西理工大学冶金与化学工程学院, 赣州 341000
  • 通信作者: 姜平国, pingguo_jiang@163.com
    基金项目: 

    国家自然科学基金(批准号:51564016)和江西省自然科学基金(批准号:20151BAB206029) 资助的课题.

摘要: 采用基于密度泛函理论的第一性原理平面波超软赝势方法,在广义梯度近似下,研究了立方WO3,WO3(001)表面结构及其氢吸附机理. 计算结果表明立方晶体WO3理论带隙宽度为0.587 eV. WO3(001)表面有WO终止(001)表面和O终止(001)表面两种结构,表面结构优化后W-O键长和W-O-W键角改变,从而实现表面弛豫;WO终止(001)表面和O终止(001) 表面分别呈现n型半导体特征和p型半导体特征. 分别计算了H原子吸附在WO终止(001)表面和O终止(001)表面的H-O2c-H,H-O2cH-O2c,H-O1c-H 和H-O1cH-O1c四种吸附构型,其中H-O1c-H 吸附构型的吸附能最小,H-O 键最短,H失去电子数最多,分别为-3.684 eV,0.0968 nm和0.55e,此吸附构型最稳定. 分析其吸附前后的态密度,带隙从吸附前的0.624 eV 增加到1.004 eV,价带宽度基本不变. H的1s轨道电子与O 的2p,2s轨道电子相互作用,在-8和-20 eV附近各形成了一个较强的孤立电子峰,两个H原子分别与一个O1c原子形成化学键,最终吸附反应生成了一个H2O分子,同时产生了一个表面氧空位.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回