搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究钨掺杂对锐钛矿物性的影响

侯清玉 赵春旺

引用本文:
Citation:

第一性原理研究钨掺杂对锐钛矿物性的影响

侯清玉, 赵春旺

A first-principle study of the effect of W-doping on physical properties of anatase TiO2

Hou Qing-Yu, Zhao Chun-Wang
PDF
导出引用
  • 在实验上, W掺杂量在0.02083–0.04167的范围内时, 有关掺杂体系的电导率影响的研究有两种相悖的结论. 为解决这个问题, 本文采用第一性原理平面波模守恒赝势方法, 首先构建了两种Ti0.97917W0.02083O2 和Ti0.95833W0.04167O2 超胞模型, 分别对这两种模型进行了几何结构优化、能带结构分布和态密度分布计算. 同时还计算了掺杂体系的电子浓度、有效质量、迁移率和电导率. 计算结果表明, 在电子自旋极化或电子非自旋极化的条件下, W掺杂浓度越大、掺杂体系的电子浓度越大、有效质量越小、迁移率越小、电导率越大、导电性能越强. 由电离能和Bohr半径分析进一步证实了Ti0.95833W0.04167O2 超胞的导电性能优于Ti0.97917W0.02083O2 超胞. 为了研究掺杂体系的结构稳定性和形成能, 又分别构建了Ti0.96875W0.03125O2, Ti0.9375W0.0625O2两种超胞模型, 几何结构优化后进行了计算, 结果表明, 在电子自旋极化或电子非自旋极化的条件下, 在W掺杂量为0.02083–0.04167的范围内, W掺杂浓度越大、掺杂体系的总能量越高、稳定性越差、 形成能越大、掺杂越困难. 将掺杂体系的晶格常数与纯的锐钛矿TiO2相比较, 发现沿a轴方向的晶格常数变大、沿c轴方向的晶格常数变小、掺杂体系的体积变大, 计算结果与实验结果相符合. 在电子自旋极化的条件下, 掺杂体系形成了半金属化的室温铁磁性稀磁半导体.
    The experimental studies of the effect of W-doping on conductivity of anatase TiO2 have opposite conclusions when the W-doping concentration is in a range from 0.02083 to 0.04167. To solve the conflict, two supercell models for Ti0.97917W0.02083O2 and Ti0.95833W0.04167O2 are set up for optimizing their geometries and calculating their band structures and the densities of states based on the first-principles plane-wave norm-conserving pseudopotential of the density functional theory. The electron concentration, electron effective mass, electronic mobility, and electronic conductivity are calculated as well. The calculated results show that both electronic conductivity and conductive property of the doped system increase while the electron effective mass decreases, with the increase of W-doping concentration in the presence or absence of electron spin. The conductive property of Ti0.95833W0.04167O2 system is better than that of Ti0.97917W0.02083O2 system, which is further proved by the analyses of ionization energy and Bohr radius. To analyze the stability and formation energy of W-doped anatase TiO2, two more supercell models for Ti0.96875W0.03125O2 and Ti0.9375W0.0625O2 are set up combined with the geometry optimization. The calculated results show that the total energy and the formation energy increase while the stability of the doped system decreases, with the increase of W-doping concentration in a range from 0.02083 to 0.04167 in the presence or absence of electron spin. Meanwhile the W-doping becomes more difficult. A comparison of the doped system with the pure anatase TiO2 shows that the lattice constant along the a-axis of the W-doped anatase TiO2 increases, and its lattice constant along the c-axis and volume increase as well. The calculated results agree with the experimental results. The doped system becomes a half-metal diluted magnetic semiconductor with a room temperature ferromagnetism in the presence of electron spin.
      通信作者: 侯清玉, by0501119@126.com
    • 基金项目: 国家自然科学基金(批准号: 61366008, 11272142)、教育部“春晖计划”和内蒙古自治区高等学校科学研究项目(批准号: NJZZ13099)资助的课题.
      Corresponding author: Hou Qing-Yu, by0501119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 11272142), the “Spring Sunshine” Project of the Ministry of Education of China, and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Mohamed M M, Asghar B H M, Muathen H A 2012 Catal. Commun. 28 58

    [2]

    Wang X L, He H L, Chen Y, Zhao J Q, Zhang X Y 2012 App. Sur. Sci. 258 5863

    [3]

    Li X, Zhu J, Li H X 2012 Catal. Commun. 24 20

    [4]

    Jiang H Q, Yan P P, Wang Q F, Zang S Y, Li J S, Wang Q Y 2013 Chem. Eng. J. 215-216 348

    [5]

    Riley M J, Williams B, Condon G Y, Borja J, Lu T M, Gill W N, Plawsky J L 2012 J. Appl. Phys. 111 074904

    [6]

    Li N, Yao K L, Li L, Sun Z Y, Gao G Y, Zhu L 2011 J. Appl. Phys. 110 073513

    [7]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [8]

    Yang Y, Wang H Y, Li X, Wang C 2009 Mater. Lett. 63 331

    [9]

    Neville E M, Mattle M J, Loughrey D, Rajesh B, Rahman M, MacElroy J M D, Sullivan J A, Thampi K R 2011 J. Am. Chem. Soc. 133 20458

    [10]

    Qin X B, Li D X, Li R Q, Zhang P, Li Y X, Wang B Y 2014 Chin. Phys. B 23 067502

    [11]

    Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101

    [12]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [13]

    Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101

    [14]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [15]

    Liao B, Tan L Z, Hou X G 2008 Acta Chim. Sin. 66 281 (in Chinese) [廖斌, 覃礼钊, 侯兴刚, 刘安东 2008 化学学报 66 281]

    [16]

    Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458

    [17]

    Chen D M, Xu G, Miao L, Chen L H, Nakao S, Jin P 2010 J. Appl. Phys. 107 063707

    [18]

    Gong C W, Jiao J R, Wang J H, Shao W 2015 Physica B 457 140

    [19]

    Segall M D, Lindan P J D, Probert M J, Pickard C J 2002 J. Phys. Condens. Matter 14 2717

    [20]

    Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Gong J Y, Yang C Z, Zhang J D, Pu W H 2014 Appl. Catal. B: Environ. 152-153 73

    [22]

    Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458

    [23]

    Zhang L, Li Y G, Xie H Y, Wang H Z, Zhang Q H 2015 J. Nanosci. Nanotech. 15 2944

    [24]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 25604

    [25]

    Tang H, Prasad K, Sanjinès R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042

    [26]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1998 半导体物理(西安: 西安交通大学出版社) 第103页]

    [27]

    Takeuchi U, Chikamatsu A, Hitosugi T, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T 2010 J. Appl. Phys. 107 023705

    [28]

    Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212

    [29]

    Eucken A, Biichner U A 1934 Z. Phys. Chem. B 27 321

    [30]

    Roberts S 1949 Phys. Rev. 76 1215

    [31]

    Couselo N, Einschlag F S G, Candal R J, Jobbagy M 2008 J. Phys. Chem. C 112 1094

    [32]

    Long R, English N J 2011 Phys. Chem. Chem. Phys. 13 13698

    [33]

    Sato K, Dederichs P H, KatayamaY H 2003 Europhys. Lett. 61 403

    [34]

    Lin Q B, Li R Q, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 物理学报 55 873]

    [35]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

  • [1]

    Mohamed M M, Asghar B H M, Muathen H A 2012 Catal. Commun. 28 58

    [2]

    Wang X L, He H L, Chen Y, Zhao J Q, Zhang X Y 2012 App. Sur. Sci. 258 5863

    [3]

    Li X, Zhu J, Li H X 2012 Catal. Commun. 24 20

    [4]

    Jiang H Q, Yan P P, Wang Q F, Zang S Y, Li J S, Wang Q Y 2013 Chem. Eng. J. 215-216 348

    [5]

    Riley M J, Williams B, Condon G Y, Borja J, Lu T M, Gill W N, Plawsky J L 2012 J. Appl. Phys. 111 074904

    [6]

    Li N, Yao K L, Li L, Sun Z Y, Gao G Y, Zhu L 2011 J. Appl. Phys. 110 073513

    [7]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [8]

    Yang Y, Wang H Y, Li X, Wang C 2009 Mater. Lett. 63 331

    [9]

    Neville E M, Mattle M J, Loughrey D, Rajesh B, Rahman M, MacElroy J M D, Sullivan J A, Thampi K R 2011 J. Am. Chem. Soc. 133 20458

    [10]

    Qin X B, Li D X, Li R Q, Zhang P, Li Y X, Wang B Y 2014 Chin. Phys. B 23 067502

    [11]

    Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101

    [12]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [13]

    Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101

    [14]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [15]

    Liao B, Tan L Z, Hou X G 2008 Acta Chim. Sin. 66 281 (in Chinese) [廖斌, 覃礼钊, 侯兴刚, 刘安东 2008 化学学报 66 281]

    [16]

    Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458

    [17]

    Chen D M, Xu G, Miao L, Chen L H, Nakao S, Jin P 2010 J. Appl. Phys. 107 063707

    [18]

    Gong C W, Jiao J R, Wang J H, Shao W 2015 Physica B 457 140

    [19]

    Segall M D, Lindan P J D, Probert M J, Pickard C J 2002 J. Phys. Condens. Matter 14 2717

    [20]

    Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Gong J Y, Yang C Z, Zhang J D, Pu W H 2014 Appl. Catal. B: Environ. 152-153 73

    [22]

    Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458

    [23]

    Zhang L, Li Y G, Xie H Y, Wang H Z, Zhang Q H 2015 J. Nanosci. Nanotech. 15 2944

    [24]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 25604

    [25]

    Tang H, Prasad K, Sanjinès R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042

    [26]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1998 半导体物理(西安: 西安交通大学出版社) 第103页]

    [27]

    Takeuchi U, Chikamatsu A, Hitosugi T, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T 2010 J. Appl. Phys. 107 023705

    [28]

    Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212

    [29]

    Eucken A, Biichner U A 1934 Z. Phys. Chem. B 27 321

    [30]

    Roberts S 1949 Phys. Rev. 76 1215

    [31]

    Couselo N, Einschlag F S G, Candal R J, Jobbagy M 2008 J. Phys. Chem. C 112 1094

    [32]

    Long R, English N J 2011 Phys. Chem. Chem. Phys. 13 13698

    [33]

    Sato K, Dederichs P H, KatayamaY H 2003 Europhys. Lett. 61 403

    [34]

    Lin Q B, Li R Q, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 物理学报 55 873]

    [35]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

  • [1] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究. 物理学报, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [2] 贾晓芳, 侯清玉, 赵春旺. 采用第一性原理研究钼掺杂浓度对ZnO物性的影响. 物理学报, 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [3] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [4] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [5] 王涛, 陈建峰, 乐园. I掺杂金红石TiO2(110)面的第一性原理研究. 物理学报, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [6] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [7] 郑树文, 范广涵, 何苗, 赵灵智. W掺杂对β-Ga2O3导电性能影响的理论研究. 物理学报, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [8] 谢东, 冷永祥, 黄楠. C掺杂TiO薄膜的制备及其第一性原理研究. 物理学报, 2013, 62(19): 198103. doi: 10.7498/aps.62.198103
    [9] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] 张学军, 张光富, 金辉霞, 朱良迪, 柳清菊. N, Co共掺杂锐钛矿相TiO2光催化剂的第一性原理研究. 物理学报, 2013, 62(1): 017102. doi: 10.7498/aps.62.017102
    [11] 李宗宝, 王霞, 贾礼超. N/Fe共掺杂锐钛矿TiO2(101)面协同作用的第一性原理研究. 物理学报, 2013, 62(20): 203103. doi: 10.7498/aps.62.203103
    [12] 郑树凯, 吴国浩, 刘磊. P掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2013, 62(4): 043102. doi: 10.7498/aps.62.043102
    [13] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [14] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [15] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [16] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [17] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [18] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究. 物理学报, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
    [19] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  4824
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-14
  • 修回日期:  2015-09-07
  • 刊出日期:  2015-12-05

/

返回文章
返回