搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非掺杂锐钛矿相TiO2铁磁性的第一性原理研究

潘凤春 徐佳楠 杨花 林雪玲 陈焕铭

非掺杂锐钛矿相TiO2铁磁性的第一性原理研究

潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭
PDF
导出引用
  • 运用第一性原理的方法研究了锐钛矿相TiO2中O空位(VO)和Ti空位(VTi)的电子结构和磁学性质.计算结果表明,单独的VO并不会诱发局域磁矩,VTi可以产生大小为4 B(1 B=9.27410-21 emu,CGS)的局域磁矩,主要分布在其周围的O原子上.这两种缺陷产生局域磁矩的原因在文中做了详细的介绍.此外,由两个VTi诱发的局域磁矩之间的磁耦合相互作用为铁磁耦合,其交换耦合系数J0为88.7 meV,意味着VTi间的铁磁耦合可以持续到室温.虽然VO并不会产生局域磁矩,但是引入VO可以进一步提升两个VTi之间的耦合强度,这可以对非掺杂锐钛矿结构的TiO2体系中铁磁性的来源作出解释:VTi产生了局域磁矩,而VO增强了VTi间长程的铁磁耦合相互作用.此外,还提出了局域磁矩之间耦合的第二类直接交换作用模型.
      通信作者: 林雪玲, nxulxl@163.com
    • 基金项目: 宁夏高等学校科学研究项目(批准号:NGY2016004)资助的课题.
    [1]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004Nature 430 630

    [2]

    Hong N H, Sakai J, Poirot N, Brize V 2006Phys.Rev.B 73 132404

    [3]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006Phys.Rev.B 74 161306

    [4]

    Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2008Appl.Phys.Lett. 92 082508

    [5]

    Hong N H, Poirot N, Sakai J 2008Phys.Rev.B 77 033205

    [6]

    Kim D, Hong J, Park Y P, Kim K J 2009Phys.:Condens.Matter 21 195405

    [7]

    Singhal R K, Kumar S, Kumari P, Xing Y T, Saitovitch E 2011Appl.Phys.Lett. 98 092510

    [8]

    Santara B, Giri P K, Imakita K, Fujii M 2013Nanoscale 5 5476

    [9]

    Eltimov I S, Yunoki S, Sawatzky A 2002Phys.Rev.Lett. 89 216403

    [10]

    Pemmaraju C D, Sanvito S 2005Phys.Rev.Lett. 94 217205

    [11]

    Rahman G, Garcia V M, Hong S C 2008Phys.Rev.B 78 184404

    [12]

    Peng H W, Li J B, Li S S, Xia J B 2009Phys.Rev.B 79 092411

    [13]

    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P 2008Phys.Rev.B 77 205411

    [14]

    Lin X L, Yan S S, Zhao M W, Hu S J, Han C, Chen Y X, Liu G L, Dai Y Y, Mei L M 2011Phys.Lett.A 375 638

    [15]

    Lin X L, Chen Z P, Gao H, Pan F C, Wang X M, Chen H M 2016J.Supercond.Nov.Magn. 29 1533

    [16]

    Zhou S, Cizmar E, Potzger K, Krause G, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J, Schmidt H 2009Phys.Rev.B 79 113201

    [17]

    Yang K, Dai Y, Huang B, Feng Y P 2010Phys.Rev.B 81 033202

    [18]

    Han G B, Hu S J, Yan S S, Mei L M 2009Phys.Status Solidi-Rapid Res.Lett. 3 148

    [19]

    Lin C W, Shin D H, Demkov A 2015J.Appl.Phys. 117 225703

    [20]

    Zuo X, Yoon S D, Yang A, Vittoria C, Harris G 2008J.Appl.Phys. 103 07B911

    [21]

    Shao B, He Y F, Feng M, Lu Y, Zuo X 2014J.Appl.Phys. 115 17A915

    [22]

    Wang H X, Zong Z C, Yan Y 2014J.Appl.Phys. 115 233909

    [23]

    Perdew J P, Wang Y 1992Phys.Rev.B 45 13244

    [24]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998Phys.Rev.B 57 1505

    [25]

    Pack J D, Monkhorst H J 1977Phys.Rev.B 16 1748

    [26]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [27]

    Zhou S, Xu Q, Potzger K, Talut G, Grtzsche R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M, Schmidt H 2008Appl.Phys.Lett. 93 232507

    [28]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987J.Am.Chem.Soc. 109 3639

    [29]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009Phys.Rev.B 80 144424

    [30]

    Pan F C, Lin X L, Chen H M 2015Acta Phys.Sin. 64 176101(in Chinese)[潘凤春, 林雪玲, 陈焕铭2015物理学报64 176101]

    [31]

    Dev P, Xue Y, Zhang P 2008Phys.Rev.Lett. 100 117204

  • [1]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004Nature 430 630

    [2]

    Hong N H, Sakai J, Poirot N, Brize V 2006Phys.Rev.B 73 132404

    [3]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006Phys.Rev.B 74 161306

    [4]

    Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2008Appl.Phys.Lett. 92 082508

    [5]

    Hong N H, Poirot N, Sakai J 2008Phys.Rev.B 77 033205

    [6]

    Kim D, Hong J, Park Y P, Kim K J 2009Phys.:Condens.Matter 21 195405

    [7]

    Singhal R K, Kumar S, Kumari P, Xing Y T, Saitovitch E 2011Appl.Phys.Lett. 98 092510

    [8]

    Santara B, Giri P K, Imakita K, Fujii M 2013Nanoscale 5 5476

    [9]

    Eltimov I S, Yunoki S, Sawatzky A 2002Phys.Rev.Lett. 89 216403

    [10]

    Pemmaraju C D, Sanvito S 2005Phys.Rev.Lett. 94 217205

    [11]

    Rahman G, Garcia V M, Hong S C 2008Phys.Rev.B 78 184404

    [12]

    Peng H W, Li J B, Li S S, Xia J B 2009Phys.Rev.B 79 092411

    [13]

    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P 2008Phys.Rev.B 77 205411

    [14]

    Lin X L, Yan S S, Zhao M W, Hu S J, Han C, Chen Y X, Liu G L, Dai Y Y, Mei L M 2011Phys.Lett.A 375 638

    [15]

    Lin X L, Chen Z P, Gao H, Pan F C, Wang X M, Chen H M 2016J.Supercond.Nov.Magn. 29 1533

    [16]

    Zhou S, Cizmar E, Potzger K, Krause G, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J, Schmidt H 2009Phys.Rev.B 79 113201

    [17]

    Yang K, Dai Y, Huang B, Feng Y P 2010Phys.Rev.B 81 033202

    [18]

    Han G B, Hu S J, Yan S S, Mei L M 2009Phys.Status Solidi-Rapid Res.Lett. 3 148

    [19]

    Lin C W, Shin D H, Demkov A 2015J.Appl.Phys. 117 225703

    [20]

    Zuo X, Yoon S D, Yang A, Vittoria C, Harris G 2008J.Appl.Phys. 103 07B911

    [21]

    Shao B, He Y F, Feng M, Lu Y, Zuo X 2014J.Appl.Phys. 115 17A915

    [22]

    Wang H X, Zong Z C, Yan Y 2014J.Appl.Phys. 115 233909

    [23]

    Perdew J P, Wang Y 1992Phys.Rev.B 45 13244

    [24]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998Phys.Rev.B 57 1505

    [25]

    Pack J D, Monkhorst H J 1977Phys.Rev.B 16 1748

    [26]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [27]

    Zhou S, Xu Q, Potzger K, Talut G, Grtzsche R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M, Schmidt H 2008Appl.Phys.Lett. 93 232507

    [28]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987J.Am.Chem.Soc. 109 3639

    [29]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009Phys.Rev.B 80 144424

    [30]

    Pan F C, Lin X L, Chen H M 2015Acta Phys.Sin. 64 176101(in Chinese)[潘凤春, 林雪玲, 陈焕铭2015物理学报64 176101]

    [31]

    Dev P, Xue Y, Zhang P 2008Phys.Rev.Lett. 100 117204

  • [1] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [2] 王庆宝, 张仲, 徐锡金, 吕英波, 张芹. N, Fe, La三掺杂锐钛矿型TiO2能带调节的理论与实验研究. 物理学报, 2015, 64(1): 017101. doi: 10.7498/aps.64.017101
    [3] 刘芳, 姜振益. 第一性原理研究Eu/N共掺杂锐钛矿TiO2光催化剂的电子和光学性质. 物理学报, 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [4] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算. 物理学报, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [5] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [6] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源. 物理学报, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [7] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究. 物理学报, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [8] 侯兴刚, 刘安东. V+注入锐钛矿TiO2第一性原理研究. 物理学报, 2007, 56(8): 4896-4900. doi: 10.7498/aps.56.4896
    [9] 彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [10] 宋红强, 陈延学, 任妙娟, 季 刚. Ti1-xCoxO2铁磁性半导体薄膜研究. 物理学报, 2005, 54(1): 369-372. doi: 10.7498/aps.54.369
    [11] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 物理学报, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [12] 吴孔平, 顾书林, 朱顺明, 黄友锐, 周孟然. 非故意掺杂碳对ZnMnO:N磁性影响的实验与理论研究. 物理学报, 2012, 61(5): 057503. doi: 10.7498/aps.61.057503
    [13] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响. 物理学报, 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [14] 李明标, 张天羡, 史力斌. 氮掺杂(1120) ZnO 薄膜磁性质研究. 物理学报, 2011, 60(9): 097504. doi: 10.7498/aps.60.097504
    [15] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [16] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [17] 宋功保, 刘福生, 彭同江, 梁敬魁, 饶光辉. 金属离子掺杂对TiO2/白云母纳米复合材料中TiO2的颗粒形态及相组成的影响. 物理学报, 2002, 51(12): 2793-2797. doi: 10.7498/aps.51.2793
    [18] 彭丽萍, 夏正才, 尹建武. 金红石相和锐钛矿相TiO2本征缺陷的第一性原理计算. 物理学报, 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [19] 林俏露, 李公平, 许楠楠, 刘欢, 王苍龙. 金红石TiO2本征缺陷磁性的第一性原理计算. 物理学报, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1020
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-18
  • 修回日期:  2016-12-01
  • 刊出日期:  2017-03-05

非掺杂锐钛矿相TiO2铁磁性的第一性原理研究

  • 1. 宁夏大学物理与电子电气工程学院, 银川 750021
  • 通信作者: 林雪玲, nxulxl@163.com
    基金项目: 

    宁夏高等学校科学研究项目(批准号:NGY2016004)资助的课题.

摘要: 运用第一性原理的方法研究了锐钛矿相TiO2中O空位(VO)和Ti空位(VTi)的电子结构和磁学性质.计算结果表明,单独的VO并不会诱发局域磁矩,VTi可以产生大小为4 B(1 B=9.27410-21 emu,CGS)的局域磁矩,主要分布在其周围的O原子上.这两种缺陷产生局域磁矩的原因在文中做了详细的介绍.此外,由两个VTi诱发的局域磁矩之间的磁耦合相互作用为铁磁耦合,其交换耦合系数J0为88.7 meV,意味着VTi间的铁磁耦合可以持续到室温.虽然VO并不会产生局域磁矩,但是引入VO可以进一步提升两个VTi之间的耦合强度,这可以对非掺杂锐钛矿结构的TiO2体系中铁磁性的来源作出解释:VTi产生了局域磁矩,而VO增强了VTi间长程的铁磁耦合相互作用.此外,还提出了局域磁矩之间耦合的第二类直接交换作用模型.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回