Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic and loss characteristics of γ'-Fe4N soft magnetic composites

Wang Wen-Biao Wu Peng Qiao Liang Wu Wei Tu Cheng-Fa Yang Sheng-Yu Li Fa-Shen

Citation:

Magnetic and loss characteristics of γ'-Fe4N soft magnetic composites

Wang Wen-Biao, Wu Peng, Qiao Liang, Wu Wei, Tu Cheng-Fa, Yang Sheng-Yu, Li Fa-Shen
PDF
HTML
Get Citation
  • Soft magnetic composite materials are prepared by mixing magnetic materials and insulating materials, which possess both the excellent magnetism of magnetic materials and the low resistivity of insulating materials. They possess broad application prospects in emerging power electronics industries such as photovoltaic inverters, new energy vehicles, and charging stations. The third-generation high-frequency wide bandgap semiconductors, mainly composed of SiC and GaN, have the operating frequency of soft magnetic materials raised to MHz. However, current soft magnetic materials have significant core losses at high frequencies. Therefore, people are focus their attention on developing new soft magnetic composite materials to reduce iron core losses at high frequencies. In this paper, γ'-Fe4N with high resistivity is prepared by nitriding carbonyl iron powders, showing its excellent soft magnetic properties, and the γ'-Fe4N is ball-milled to become easy plane γ'-Fe4N powder. Compared with the none easy plane γ'-Fe4N powders, the none easy plane γ'-Fe4N powders are spherical in shape, the easy plane γ'-Fe4N powders exhibit a high aspect to thickness ratio in sheet shape. The obtained easy plane powders are mixed with polyurethane insulation to make the soft magnetic composite. There is a significant difference between the in-plane and out-of-plane hysteresis loop of the magnetostatic easy plane γ'-Fe4N soft magnetic composite, and the in-plane hysteresis loop is more easily magnetized to saturation state. The degree of plane orientation is 98.46%. The fitting analysis results of the Jiles-Atherton model also prove its easy plane characteristic, and has higher effective permeability and lower power loss than the counterparts of the none easy plane γ'-Fe4N composite that is not ball-milled. After loss separation, it is found that in a low frequency range, hysteresis loss is the main loss, while in a high frequency range, the excess loss will surpass the hysteresis loss, acting as the main loss, the magnetostatic easy plane γ'-Fe4N soft magnetic composites material reduces hysteresis loss and excess loss. Comparing with similar soft magnetic composites, the eddy current effect in magnetic iron particles is reduced by nitriding process, and the magnetostatic easy plane γ'-Fe4N soft magnetic composite has excellent high-frequency soft magnetic properties. Magnetostatic easy plane γ'-Fe4N provides a new idea for the high-frequency application of soft magnetic composites matching the third generation wide bandgap semiconductors.
      Corresponding author: Qiao Liang, qiaoliang@lzu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3501302), the National Natural Science Foundation of China (Grant No. 51731001), and the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization’s Key Research and Development Projects of China.
    [1]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 418Google Scholar

    [2]

    Périgo E A, Weidenfeller B, Kollár P, Füzer J 2018 Appl. Phys. Rev. 5 031301Google Scholar

    [3]

    孙忠巍 2013 硕士学位论文 (北京: 北京工业大学)

    Sun Z W 2013 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

    [4]

    Shirane G, Takei W J, Ruby S L 1962 Phys. Rev. 126 49Google Scholar

    [5]

    Peng X, Yu S, Chang J, Ge M, Li J, Ellis T, Yang Y, Xu J, Hong B, Jin D, Jin H, Wang X, Ge H 2020 J. Magn. Magn. Mater. 500 166407Google Scholar

    [6]

    Wu X L, Zhong W, Jiang H Y, Tang N J, Zou W Q, Du Y W 2004 J. Magn. Magn. Mater. 281 77Google Scholar

    [7]

    Wallace W E, Huang M Q 1994 J. Appl. Phys. 76 6648Google Scholar

    [8]

    Kim T K, Takahashi M 1972 Appl. Phys. Lett. 20 492Google Scholar

    [9]

    Coey J M D, Smith P A I 1999 J. Magn. Magn. Mater. 200 405Google Scholar

    [10]

    成泰民, 孙腾, 张龙燕, 张新欣, 朱林, 李林 2015 物理学报 64 156301Google Scholar

    Cheng T M, Sun T, Zhang L Y, Zhang X X, Zhu L, Li L 2015 Acta Phys. Sin. 64 156301Google Scholar

    [11]

    李贞, 李庆民, 李长云, 孙秋芹, 娄杰 2011 中国电机工程学报 31 124

    Li Z, Li Q M, Li C Y, Sun Q Q, Lou J 2011 Proceed. CSEE 31 124

    [12]

    Yu M J, Xu Y, Mao Q, Li F, Wang C 2016 J. Alloys Compd. 656 362Google Scholar

    [13]

    瞿志学, 王群, 孙忠巍, 潘伟 2013 稀有金属材料与工程 42 126Google Scholar

    Qu Z X, Wang Q, Sun Z W, Pan W 2013 Rare Metal Mater. Eng. 42 126Google Scholar

    [14]

    Narahara A, Ito K, Suemasu T, Takahashi Y K, Ranajikanth A, Hono K 2009 Appl. Phys. Lett. 94 202502Google Scholar

    [15]

    卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民 2019 物理学报 68 118101

    Lu Q H, Tang X L, Song Y Z, Zuo X W, Han G L, Yan P X, Liu W M 2019 Acta Phys. Sin. 68 118101

    [16]

    薛德胜, 陈子瑜, 李发伸 1996 兰州大学学报(自然科学版) 32 49

    Xue D S, Chen Z Y, Li F S 1996 J. Lanzhou Univ. (Natural Sciences) 32 49

    [17]

    Zhao Z J, Xue D S, Li F S 2001 J. Magn. Magn. Mater. 232 155Google Scholar

    [18]

    薛德胜, 李发伸 1997 中国科学(A辑) 27 275

    Xue D S, Li F S 1997 Sci. China (Ser. A) 27 275

    [19]

    Zhang C, Liu X, Li M, Liu C, Li H, Meng X, Rehman K M U 2017 J. Mater. Sci. Mater. Electron. 29 1254

    [20]

    王国武 2013 博士学位论文 (兰州: 兰州大学)

    Wang G W 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [21]

    Wu P, Zhang Y D, Hao H B, Qiao L, Liu X, Wang T, Li F S 2022 J. Magn. Magn. Mater. 549 168962Google Scholar

    [22]

    Takanori Tsutaoka 2003 J. Appl. Phys. 93 2789Google Scholar

    [23]

    Kollár P, Vojtek V, Birčáková Z, Füzer J, Fáberová M, Bureš R 2014 J. Magn. Magn. Mater. 353 65Google Scholar

    [24]

    Taghvaei A H, Shokrollahi H, Janghorban K 2009 Mater. Des. 30 3989Google Scholar

    [25]

    Taghvaei A H, Ebrahimi A, Gheisari K 2010 J. Magn. Magn. Mater. 322 3748Google Scholar

    [26]

    Chiriac H 2003 IEEE Trans. Magn. 39 3040Google Scholar

    [27]

    Liu H J, Su H L, Geng W B, Sun Z G, Song T T, Tong X C, Zou Z Q, Wu Y C, Du Y W 2016 J. Supercond. Nov. Magn. 29 463Google Scholar

    [28]

    熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏 2022 物理学报 71 157502Google Scholar

    Xiong Z W, Yang J, Wang Y, Yang L, Guan X, Cao L H, Wang J, Gao Z P 2022 Acta Phys. Sin. 71 157502Google Scholar

    [29]

    Yao Z, Peng Y, Xia C, Yi X, Mao S, Zhang M 2020 J. Alloys Compd. 827 154345Google Scholar

    [30]

    Peng Y, Yi Y, Li L, Ai H, Wang X, Chen L 2017 J. Magn. Magn. Mater. 428 148Google Scholar

    [31]

    Liu J H, Peng X L, Hong B, Xu J C, Han Y B, Li J, Ge H L, Yang Y T, Wang X Q 2021 J. Magn. Magn. Mater. 532 167994Google Scholar

  • 图 1  γ'-Fe4N复合物制备示意图

    Figure 1.  Schematic diagram of the preparation of γ'-Fe4N composite.

    图 2  不同温度、时间下氮化产物的X射线衍射图

    Figure 2.  X-ray diffraction patterns of nitriding products synthesized under different temperatures and times.

    图 3  (a) 非易面γ'-Fe4N颗粒的SEM图像; (b) 易面γ'-Fe4N颗粒的SEM图像; (c) 单个易面γ'-Fe4N颗粒侧面的SEM图像

    Figure 3.  (a) SEM image of none easy plane γ'-Fe4N particles; (b) SEM image of easy plane γ'-Fe4N particles; (c) SEM image of a single easy plane γ'-Fe4N particle profile.

    图 4  磁滞回线的实测及J-A模型拟合结果 (a) 非易面γ'-Fe4N粉末; (b) 易面γ'-Fe4N复合物面内以及面外

    Figure 4.  Hysteresis loop measured and J-A model fitted: (a) None easy plane γ'-Fe4N powder; (b) in-plane and out-of-plane of easy plane γ'-Fe4N composite.

    图 5  (a) 易面和非易面γ'-Fe4N复合物的磁谱实测结果; (b) 易面γ'-Fe4N复合物的磁谱拟合结果与实测结果; (c) 非易面 γ'-Fe4N复合物的磁谱拟合结果及实测结果

    Figure 5.  (a) Magnetic spectrum measurement of easy plane and none plane γ'-Fe4N composite; (b) magnetic spectrum measurement and fitting results of easy plane γ'-Fe4N composite; (c) magnetic spectrum measurement and fitting results of none easy plane γ'-Fe4N composite.

    图 6  B = 8 mT下易面和非易面γ'-Fe4N复合物的损耗 (a) 总损耗; (b) 磁滞损耗; (c) 涡流损耗; (d) 剩余损耗; (e) 非易面γ'-Fe4N复合物的损耗分离结果; (f) 易面γ'-Fe4N复合物的损耗分离结果

    Figure 6.  Losses of easy plane and none plane γ'-Fe4N composite at B = 8 mT: (a) Total losses; (b) hysteresis losses; (c) eddy current losses; (d) residual losses; (e) depletion separation results of none easy plane γ'-Fe4N composite; (f) depletion separation results of easy plane γ'-Fe4N composite.

    图 7  B = 8 mT下的损耗分离 (a) 易面γ'-Fe4N复合物; (b) 非易面γ'-Fe4N复合物

    Figure 7.  Loss separation at B = 8 mT: (a) Easy plane γ'-Fe4N composite; (b) none easy plane γ'-Fe4N composite.

    图 8  Pcv = 500 kW/m3时, 易面γ'-Fe4N复合物的性能因子曲线

    Figure 8.  Performance factor curve of the easy-plane γ'-Fe4N composite at Pcv = 500 kW/m3.

    表 1  非易面γ'-Fe4N粉末及易面γ'-Fe4N的J-A拟合参数

    Table 1.  J-A fitting parameters of none easy plane γ'-Fe4N powder and easy plane γ'-Fe4N composite.

    非易面
    γ'-Fe4N
    易面γ'-Fe4N
    (面内)
    易面γ'-Fe4N
    (面外)
    J-A拟合参数
    a/104
    60.03.220.0
    J-A拟合参数
    k/103
    3.14.012.0
    Mr/(emu·g–1)3.4968.8402.170
    Hc/Oe31.65851.29391.460
    DownLoad: CSV

    表 2  易面及非易面γ'-Fe4N复合物的磁谱拟合参数

    Table 2.  Magnetic spectral fitting parameters of easy plane γ'-Fe4N and none easy plane γ'-Fe4N composite.

    畴壁移动畴内转动
    $ {\chi }_{{\rm{d}}0} $$ {\omega }_{{\rm{d}}0}/10 $10β/1010$ {\chi }_{{\rm{s}}0} $$ {\omega }_{{\rm{s}}0}/10 $10$ \vartheta $
    易面γ'-Fe4N
    复合物
    6.00.35.84.70.71.2
    非易面γ'-Fe4N
    复合物
    5.84.010.03.71.31.5
    DownLoad: CSV

    表 3  非易面γ'-Fe4N复合材料和易面γ'-Fe4N复合物损耗分离的拟合参数

    Table 3.  Simulated parameters for loss separation of none easy plane γ'-Fe4N composite and easy plane γ'-Fe4N composite.

    Physt/(kW·m–3)Peddy/(kW·m–3)Pex/(kW·m–3)
    chysth$ {c}_{{\rm{e}}{\rm{d}}{\rm{d}}{\rm{y}}}^{{\rm{i}}{\rm{n}}{\rm{t}}{\rm{e}}{\rm{r}}} $/10–10$ {c}_{{\rm{e}}{\rm{d}}{\rm{d}}{\rm{y}}}^{{\rm{i}}{\rm{n}}{\rm{t}}{\rm{r}}{\rm{a}}} $/10–6cexcxy
    非易面γ'-Fe4N复合物3.63832.16529.240.4241.19652.14311.0731
    易面γ'-Fe4N复合物5.30962.33155.001.4120.0276782.14791.3235
    DownLoad: CSV

    表 4  不同软磁材料的功率损耗对比[27-31]

    Table 4.  Comparison of power loss of different soft magnetic materials[27-31].

    Pcv/(kW·m–3)PF/(T·kHz)Ref.
    This work235.06
    (1000 kHz, 10 mT)
    10
    Fe-Si-Al power270
    (50 kHz, 10 mT)
    0.5[27]
    FeNiMo/SiO2217.3
    (50 kHz, 50 mT)
    2.5[28]
    FeNiMo/Al2O3321.78
    (50 kHz, 100 mT)
    5[29]
    Fe/NiZn199.3
    (100 kHz, 20 mT)
    2[30]
    Fe/Co2Z380
    (590 kHz, 5 mT)
    2.95[31]
    DownLoad: CSV
  • [1]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 418Google Scholar

    [2]

    Périgo E A, Weidenfeller B, Kollár P, Füzer J 2018 Appl. Phys. Rev. 5 031301Google Scholar

    [3]

    孙忠巍 2013 硕士学位论文 (北京: 北京工业大学)

    Sun Z W 2013 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

    [4]

    Shirane G, Takei W J, Ruby S L 1962 Phys. Rev. 126 49Google Scholar

    [5]

    Peng X, Yu S, Chang J, Ge M, Li J, Ellis T, Yang Y, Xu J, Hong B, Jin D, Jin H, Wang X, Ge H 2020 J. Magn. Magn. Mater. 500 166407Google Scholar

    [6]

    Wu X L, Zhong W, Jiang H Y, Tang N J, Zou W Q, Du Y W 2004 J. Magn. Magn. Mater. 281 77Google Scholar

    [7]

    Wallace W E, Huang M Q 1994 J. Appl. Phys. 76 6648Google Scholar

    [8]

    Kim T K, Takahashi M 1972 Appl. Phys. Lett. 20 492Google Scholar

    [9]

    Coey J M D, Smith P A I 1999 J. Magn. Magn. Mater. 200 405Google Scholar

    [10]

    成泰民, 孙腾, 张龙燕, 张新欣, 朱林, 李林 2015 物理学报 64 156301Google Scholar

    Cheng T M, Sun T, Zhang L Y, Zhang X X, Zhu L, Li L 2015 Acta Phys. Sin. 64 156301Google Scholar

    [11]

    李贞, 李庆民, 李长云, 孙秋芹, 娄杰 2011 中国电机工程学报 31 124

    Li Z, Li Q M, Li C Y, Sun Q Q, Lou J 2011 Proceed. CSEE 31 124

    [12]

    Yu M J, Xu Y, Mao Q, Li F, Wang C 2016 J. Alloys Compd. 656 362Google Scholar

    [13]

    瞿志学, 王群, 孙忠巍, 潘伟 2013 稀有金属材料与工程 42 126Google Scholar

    Qu Z X, Wang Q, Sun Z W, Pan W 2013 Rare Metal Mater. Eng. 42 126Google Scholar

    [14]

    Narahara A, Ito K, Suemasu T, Takahashi Y K, Ranajikanth A, Hono K 2009 Appl. Phys. Lett. 94 202502Google Scholar

    [15]

    卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民 2019 物理学报 68 118101

    Lu Q H, Tang X L, Song Y Z, Zuo X W, Han G L, Yan P X, Liu W M 2019 Acta Phys. Sin. 68 118101

    [16]

    薛德胜, 陈子瑜, 李发伸 1996 兰州大学学报(自然科学版) 32 49

    Xue D S, Chen Z Y, Li F S 1996 J. Lanzhou Univ. (Natural Sciences) 32 49

    [17]

    Zhao Z J, Xue D S, Li F S 2001 J. Magn. Magn. Mater. 232 155Google Scholar

    [18]

    薛德胜, 李发伸 1997 中国科学(A辑) 27 275

    Xue D S, Li F S 1997 Sci. China (Ser. A) 27 275

    [19]

    Zhang C, Liu X, Li M, Liu C, Li H, Meng X, Rehman K M U 2017 J. Mater. Sci. Mater. Electron. 29 1254

    [20]

    王国武 2013 博士学位论文 (兰州: 兰州大学)

    Wang G W 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [21]

    Wu P, Zhang Y D, Hao H B, Qiao L, Liu X, Wang T, Li F S 2022 J. Magn. Magn. Mater. 549 168962Google Scholar

    [22]

    Takanori Tsutaoka 2003 J. Appl. Phys. 93 2789Google Scholar

    [23]

    Kollár P, Vojtek V, Birčáková Z, Füzer J, Fáberová M, Bureš R 2014 J. Magn. Magn. Mater. 353 65Google Scholar

    [24]

    Taghvaei A H, Shokrollahi H, Janghorban K 2009 Mater. Des. 30 3989Google Scholar

    [25]

    Taghvaei A H, Ebrahimi A, Gheisari K 2010 J. Magn. Magn. Mater. 322 3748Google Scholar

    [26]

    Chiriac H 2003 IEEE Trans. Magn. 39 3040Google Scholar

    [27]

    Liu H J, Su H L, Geng W B, Sun Z G, Song T T, Tong X C, Zou Z Q, Wu Y C, Du Y W 2016 J. Supercond. Nov. Magn. 29 463Google Scholar

    [28]

    熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏 2022 物理学报 71 157502Google Scholar

    Xiong Z W, Yang J, Wang Y, Yang L, Guan X, Cao L H, Wang J, Gao Z P 2022 Acta Phys. Sin. 71 157502Google Scholar

    [29]

    Yao Z, Peng Y, Xia C, Yi X, Mao S, Zhang M 2020 J. Alloys Compd. 827 154345Google Scholar

    [30]

    Peng Y, Yi Y, Li L, Ai H, Wang X, Chen L 2017 J. Magn. Magn. Mater. 428 148Google Scholar

    [31]

    Liu J H, Peng X L, Hong B, Xu J C, Han Y B, Li J, Ge H L, Yang Y T, Wang X Q 2021 J. Magn. Magn. Mater. 532 167994Google Scholar

  • [1] Xiao Yi-Yao, He Jia-Hao, Chen Nan-Kun, Wang Chao, Song Ning-Ning. Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles. Acta Physica Sinica, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [2] Ren Guo-Liang, Shen Kai-Bo, Liu Yong-Jia, Liu Ying-Guang. Thermal conduction mechanism of graphene-like carbon nitride structure (C3N). Acta Physica Sinica, 2023, 72(1): 013102. doi: 10.7498/aps.72.20221441
    [3] Bai Ru-Xue, Guo Hong-Xia, Zhang Hong, Wang Di, Zhang Feng-Qi, Pan Xiao-Yu, Ma Wu-Ying, Hu Jia-Wen, Liu Yi-Wei, Yang Ye, Lyu Wei, Wang Zhong-Ming. High-energy proton radiation effect of Gallium nitride power device with enhanced Cascode structure. Acta Physica Sinica, 2023, 72(1): 012401. doi: 10.7498/aps.72.20221617
    [4] Huang Zi-Yue, Deng Yu, Ji Xiao-Ling. Influence of spherical aberration on beam quality of high-power laser beams propagating upwards in the atmosphere. Acta Physica Sinica, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [5] Wu Yang,  Chen Qi,  Xu Rui-Ying,  Ge Rui,  Zhang Biao,  Tao Xu,  Tu Xue-Cou,  Jia Xiao-Qing,  Zhang La-Bao,  Kang Lin,  Wu Pei-Heng. Optical properties of niobium nitride nanowires. Acta Physica Sinica, 2018, 67(24): 248501. doi: 10.7498/aps.67.20181646
    [6] Li Wen-Yu, Huo Ge, Huang Yan, Dong Li-Juan, Lu Xue-Gang. Synthesis and superparamagnetism of Fe3O4 hollow nano-microspheres. Acta Physica Sinica, 2018, 67(17): 177501. doi: 10.7498/aps.67.20180579
    [7] Li Shu-Ping, Zhang Zhi-Li, Fu Kai, Yu Guo-Hao, Cai Yong, Zhang Bao-Shun. High-performance AlGaN/GaN MIS-HEMT device based on in situ plasma nitriding and low power chemical vapor deposition Si3N4 gate dielectrics. Acta Physica Sinica, 2017, 66(19): 197301. doi: 10.7498/aps.66.197301
    [8] Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun. First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots. Acta Physica Sinica, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [9] Cheng Tai-Min, Sun Teng, Zhang Long-Yan, Zhang Xin-Xin, Zhu Lin, Li Lin. Phonon stability and magnetism of -Fe4N crystalline state alloys at high pressure. Acta Physica Sinica, 2015, 64(15): 156301. doi: 10.7498/aps.64.156301
    [10] Meng Qing-Miao, Jiang Ji-Jian, Li Chuan-An. Instantaneous radiation energy flux and instantaneous radiation power of dynamic spherically symmetric black holes. Acta Physica Sinica, 2010, 59(3): 1481-1486. doi: 10.7498/aps.59.1481
    [11] Xu Hong-Bin, Wang Yuan-Xu. First-principles study of low-compressibility of transition-metal Tc and its nitrides TcN,TcN2,TcN3 and TcN4. Acta Physica Sinica, 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
    [12] Meng Qing-Miao, Jiang Ji-Jian, Wang Shuai. Thermal particles model and radiation power of static spherically symmetric black holes. Acta Physica Sinica, 2009, 58(11): 7486-7490. doi: 10.7498/aps.58.7486
    [13] Fan Jiang-Wei, Bian Qing, Yin Shi-Long, Yan Wen-Sheng, Liu Wen-Han, Wei Shi-Qiang. X-ray absorption fine structure and x-ray diffraction studies on structures of Fe70Cu30 alloys affected by mechanical alloying. Acta Physica Sinica, 2004, 53(2): 514-520. doi: 10.7498/aps.53.514
    [14] Liu Shi, Zheng Hua, Zhao Yue, Xiong Liang-Yue, Wang Long-Bao, Yang Xun. The occupying activities of helium in ball-milled hydrogen-storage alloys. Acta Physica Sinica, 2003, 52(3): 756-760. doi: 10.7498/aps.52.756
    [15] Liu Lin. . Acta Physica Sinica, 2002, 51(3): 603-608. doi: 10.7498/aps.51.603
    [16] WEN SHUANG-CHUN, FAN DIAN-YUAN. THEORY OF SMALL-SCALE SELF-FOCUSING OF INTENSE LASER BEAMS IN MEDIA WITH GAIN AN D LOSS. Acta Physica Sinica, 2000, 49(7): 1282-1286. doi: 10.7498/aps.49.1282
    [17] Yang Kang-Sheng, Wu Guo-Tao, Zhang Xiao-Bin, Chen Xiao-Hua, Lu You-Nan, Wang Miao, Wang Chun-Sheng, He Pi-Mu, Xu Zhu-De, Li Wen-Zhu. . Acta Physica Sinica, 2000, 49(3): 522-526. doi: 10.7498/aps.49.522
    [18] CHEN JUN-FANG, WANG WEI-XIANG, LIU SONG-HAO, REN ZHAO-XING. MICROSTRUCTURE OF SILICON NITRIDE THIN FILM. Acta Physica Sinica, 1998, 47(9): 1529-1535. doi: 10.7498/aps.47.1529
    [19] HU HAI-TIAN, LAI BING, YUAN ZE-LIANG, DING XUN-MIN, HOU XIAO-YUAN. NITRIDATION OF K/GaAs(100) SURFACES. Acta Physica Sinica, 1998, 47(6): 1041-1046. doi: 10.7498/aps.47.1041
    [20] LI ZI-RONG, MENG QING-AN, GAO QI-JUAN, SUN KE, WEI YU-NIAN. ANISOTROPIC HYPERFINE INTERACTIONS IN Fe4N ALLOY. Acta Physica Sinica, 1996, 45(2): 314-317. doi: 10.7498/aps.45.314
Metrics
  • Abstract views:  2162
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  10 December 2022
  • Accepted Date:  07 May 2023
  • Available Online:  08 May 2023
  • Published Online:  05 July 2023

/

返回文章
返回