搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质

  1. 翟顺成 郭平 郑继明 赵普举 索兵兵 万云

第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质

  1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云,
PDF
导出引用
导出核心图
  • 利用密度泛函和含时密度泛函理论研究了氧(O)和硫(S)原子掺杂的石墨相氮化碳(g-C3N4)6量子点的几何、电子结构和紫外-可见光吸收性质.结果表明:掺杂后(g-C3N4)6量子点杂质原子周围的CN键长发生了一定的改变,最高电子占据分子轨道-最低电子未占据分子轨道(HOMO-LUMO)能隙显著减小.形成能的计算表明O原子取代掺杂的(g-C3N4)6量子点体系更稳定,且O原子更易取代N3位点,而S原子更易取代N8位点.模拟的紫外-可见电子吸收光谱表明,O和S原子的掺杂改善了(g-C3N4)6量子点的光吸收,使其吸收范围覆盖了整个可见光区域,甚至扩展到了红外区.而且适当的杂质浓度使(g-C3N4)6量子点光吸收在强度和范围上都得到明显改善.通过O和S掺杂的比较,发现二者在可见光区对(g-C3N4)6量子点的光吸收有相似的影响,然而在长波长区域二者的影响有明显差异.总体而言,O掺杂要优于S掺杂对(g-C3N4)6量子点光吸收的影响.
      通信作者: 郭平, 1121074564@qq.com;guoping@nwu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21673174)、陕西省自然科学基金(批准号:2014JM2-1008)和2015国家重点实验室瞬态光学与光子技术自然开放基金(批准号:SKLST200915)资助的课题.
    187102-20171006suppl(1).pdf
    对小尺寸(g-C3N4)n 量子点的几何、电子结构及吸收光谱系统研究的部分结果
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R 2014 Chem. Sus. Chem. 7 690

    [3]

    Tan L L, Ong W J, Chai S P, Mohamed A R 2014 Chem. Commun. 50 6923

    [4]

    Chen Y, Wang B, Lin S, Zhang Y, Wang X 2014 J. Phys. Chem. C 118 29981

    [5]

    Ye C, Li J X, Li Z J, Li X B, Fan X B, Zhang L P, Chen B, Tung C H, Wu L Z 2015 ACS Catal. 5 6973

    [6]

    Zhang S L, Wang J X, Huang Y, Zeng M, Xu J 2015 J. Mater. Chem. A 3 10119

    [7]

    Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [8]

    Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G 2004 J. Am. Chem. Soc. 126 4782

    [9]

    Huang Z F, Song J, Pan L, Wang Z, Zhang X, Zou J J, Mi W, Zhang X, Wang L 2015 Nano Energy 12 646

    [10]

    Dong G, Zhao K, Zhang L 2012 Chem. Commun. 48 6178

    [11]

    Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 4646

    [12]

    Xu C, Han Q, Zhao Y, Wang L, Li Y, Qu L J 2015 J. Mater. Chem. A 3 1841

    [13]

    Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S 2016 Appl. Surf. Sci. 360 1016

    [14]

    Li Y, Hu Y, Zhao Y, Shi G Q, Deng L, Hou Y B, Qu L T 2011 Adv. Mater. 23 776

    [15]

    Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z 2012 Energy Environ. Sci. 5 6717

    [16]

    Zhang Z P, Zhang J, Chen N, Qu L T 2012 Energy Environ. Sci. 5 8869

    [17]

    Cao L, Sahu S, Anikumar P, Bunker C E, Xu J, Fernanodo K A S, Wang P, Guliants E A, Tackett K N, Sun Y P 2011 J. Am. Chem. Soc. 133 4754

    [18]

    Song Z P, Lin T R, Lin L H, Lin S, Fu F F, Wang X C, Guo L Q 2016 Angew. Chem. Int. Ed. 55 2773

    [19]

    Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y, Liu R S 2016 Inorg. Chem. 55 10267

    [20]

    Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang C H, Basu M, Pande S 2016 Langmuir 32 10054

    [21]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76

    [22]

    Zhou J, Yang Y, Zhang C Y 2013 Chem. Commun. 49 8605

    [23]

    te Velde G, Bickelhaupt F M, Baerends E J, Fonseca G C, vanGisbergen S J A, Snijders J G, Ziegler T 2001 J. Comput. Chem. 22 931

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [26]

    Casida M E 2009 J. Mol. Struct:Theochem. 914 3

    [27]

    Casida M E, Huix-Rotllant M 2012 Rev. Phys. Chem. 63 287

    [28]

    Schipper P R T, Gritsenko O V, van Gisbergen S J A, Baerends E J 2000 J. Chem. Phys. 112 1344

    [29]

    Liu G, Niu P, Qing L G, Cheng H M 2010 J. Am. Chem. Soc. 132 11642

    [30]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [31]

    Zhang J, Zhang G, Chen X, Lin S, Mohlmann L, Dołega G, Lipner G, Antonietti M, Blechert S, Wang X 2012 Angew. Chem. Int. Ed. 51 3183

    [32]

    Huang Z F, Pan L, Zou J J, Zhang X, Wang L 2014 Nano Scale 6 14044

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R 2014 Chem. Sus. Chem. 7 690

    [3]

    Tan L L, Ong W J, Chai S P, Mohamed A R 2014 Chem. Commun. 50 6923

    [4]

    Chen Y, Wang B, Lin S, Zhang Y, Wang X 2014 J. Phys. Chem. C 118 29981

    [5]

    Ye C, Li J X, Li Z J, Li X B, Fan X B, Zhang L P, Chen B, Tung C H, Wu L Z 2015 ACS Catal. 5 6973

    [6]

    Zhang S L, Wang J X, Huang Y, Zeng M, Xu J 2015 J. Mater. Chem. A 3 10119

    [7]

    Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [8]

    Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G 2004 J. Am. Chem. Soc. 126 4782

    [9]

    Huang Z F, Song J, Pan L, Wang Z, Zhang X, Zou J J, Mi W, Zhang X, Wang L 2015 Nano Energy 12 646

    [10]

    Dong G, Zhao K, Zhang L 2012 Chem. Commun. 48 6178

    [11]

    Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 4646

    [12]

    Xu C, Han Q, Zhao Y, Wang L, Li Y, Qu L J 2015 J. Mater. Chem. A 3 1841

    [13]

    Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S 2016 Appl. Surf. Sci. 360 1016

    [14]

    Li Y, Hu Y, Zhao Y, Shi G Q, Deng L, Hou Y B, Qu L T 2011 Adv. Mater. 23 776

    [15]

    Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z 2012 Energy Environ. Sci. 5 6717

    [16]

    Zhang Z P, Zhang J, Chen N, Qu L T 2012 Energy Environ. Sci. 5 8869

    [17]

    Cao L, Sahu S, Anikumar P, Bunker C E, Xu J, Fernanodo K A S, Wang P, Guliants E A, Tackett K N, Sun Y P 2011 J. Am. Chem. Soc. 133 4754

    [18]

    Song Z P, Lin T R, Lin L H, Lin S, Fu F F, Wang X C, Guo L Q 2016 Angew. Chem. Int. Ed. 55 2773

    [19]

    Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y, Liu R S 2016 Inorg. Chem. 55 10267

    [20]

    Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang C H, Basu M, Pande S 2016 Langmuir 32 10054

    [21]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76

    [22]

    Zhou J, Yang Y, Zhang C Y 2013 Chem. Commun. 49 8605

    [23]

    te Velde G, Bickelhaupt F M, Baerends E J, Fonseca G C, vanGisbergen S J A, Snijders J G, Ziegler T 2001 J. Comput. Chem. 22 931

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [26]

    Casida M E 2009 J. Mol. Struct:Theochem. 914 3

    [27]

    Casida M E, Huix-Rotllant M 2012 Rev. Phys. Chem. 63 287

    [28]

    Schipper P R T, Gritsenko O V, van Gisbergen S J A, Baerends E J 2000 J. Chem. Phys. 112 1344

    [29]

    Liu G, Niu P, Qing L G, Cheng H M 2010 J. Am. Chem. Soc. 132 11642

    [30]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [31]

    Zhang J, Zhang G, Chen X, Lin S, Mohlmann L, Dołega G, Lipner G, Antonietti M, Blechert S, Wang X 2012 Angew. Chem. Int. Ed. 51 3183

    [32]

    Huang Z F, Pan L, Zou J J, Zhang X, Wang L 2014 Nano Scale 6 14044

  • [1] 任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春. 空位缺陷对-AgVO3电子结构和光吸收性能的影响. 物理学报, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [2] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响. 物理学报, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [3] 包黎红, 朝洛蒙, 伟伟, 特古斯. 稀土硼化物LaxCe1-xB6亚微米粉的制备及光吸收研究. 物理学报, 2015, 64(9): 096104. doi: 10.7498/aps.64.096104
    [4] 牟季美, 蔡维理, 许彦旗, 王银海. 纳米Cu/Al2O3组装体模板合成与光吸收. 物理学报, 2001, 50(9): 1751-1755. doi: 10.7498/aps.50.1751
    [5] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [6] 许佳雄, 姚若河. n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析. 物理学报, 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [7] 杨双波. 掺杂浓度及掺杂层厚度对Si均匀掺杂的GaAs量子阱中电子态结构的影响. 物理学报, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [8] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究. 物理学报, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [9] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究. 物理学报, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [10] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算. 物理学报, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [11] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [12] 徐金荣, 王影, 朱兴凤, 李平, 张莉. N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [13] 王艳丽, 苏克和, 颜红侠, 王欣. C在不同位置掺杂(n,n)型BN纳米管的密度泛函研究. 物理学报, 2014, 63(4): 046101. doi: 10.7498/aps.63.046101
    [14] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钶铁矿型MnNb2O6的熔盐法合成、钒掺杂与磁性研究. 物理学报, 2011, 60(4): 048101. doi: 10.7498/aps.60.048101
    [15] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响. 物理学报, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [16] 王先杰, 隋 郁, 千正男, 刘志国, 苗继鹏, 黄喜强, 吕 喆, 朱瑞滨, 程金光, 苏文辉. Fe位Al掺杂对Sr2FeMoO6磁结构和磁输运性质的影响. 物理学报, 2006, 55(2): 849-853. doi: 10.7498/aps.55.849
    [17] 阮璐风, 王磊, 孙得彦. Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响. 物理学报, 2017, 66(18): 187301. doi: 10.7498/aps.66.187301
    [18] 王庆宝, 张仲, 徐锡金, 吕英波, 张芹. N, Fe, La三掺杂锐钛矿型TiO2能带调节的理论与实验研究. 物理学报, 2015, 64(1): 017101. doi: 10.7498/aps.64.017101
    [19] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [20] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
  • 187102-20171006suppl(1).pdf
    对小尺寸(g-C3N4)n 量子点的几何、电子结构及吸收光谱系统研究的部分结果
  • 引用本文:
    Citation:
计量
  • 文章访问数:  684
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-05
  • 修回日期:  2017-06-18
  • 刊出日期:  2017-09-20

第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质

  • 1. 西北大学物理学院, 西安 710069;
  • 2. 西北大学光子学与光子技术研究所, 西安 710069;
  • 3. 西北大学现代物理研究所, 西安 710069
  • 通信作者: 郭平, 1121074564@qq.com;guoping@nwu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:21673174)、陕西省自然科学基金(批准号:2014JM2-1008)和2015国家重点实验室瞬态光学与光子技术自然开放基金(批准号:SKLST200915)资助的课题.

摘要: 利用密度泛函和含时密度泛函理论研究了氧(O)和硫(S)原子掺杂的石墨相氮化碳(g-C3N4)6量子点的几何、电子结构和紫外-可见光吸收性质.结果表明:掺杂后(g-C3N4)6量子点杂质原子周围的CN键长发生了一定的改变,最高电子占据分子轨道-最低电子未占据分子轨道(HOMO-LUMO)能隙显著减小.形成能的计算表明O原子取代掺杂的(g-C3N4)6量子点体系更稳定,且O原子更易取代N3位点,而S原子更易取代N8位点.模拟的紫外-可见电子吸收光谱表明,O和S原子的掺杂改善了(g-C3N4)6量子点的光吸收,使其吸收范围覆盖了整个可见光区域,甚至扩展到了红外区.而且适当的杂质浓度使(g-C3N4)6量子点光吸收在强度和范围上都得到明显改善.通过O和S掺杂的比较,发现二者在可见光区对(g-C3N4)6量子点的光吸收有相似的影响,然而在长波长区域二者的影响有明显差异.总体而言,O掺杂要优于S掺杂对(g-C3N4)6量子点光吸收的影响.

English Abstract

参考文献 (32)
补充材料:
187102-20171006suppl(1).pdf
对小尺寸(g-C3N4)n 量子点的几何、电子结构及吸收光谱系统研究的部分结果

目录

    /

    返回文章
    返回