搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质

  1. 翟顺成 郭平 郑继明 赵普举 索兵兵 万云

第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质

  1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云,
PDF
导出引用
导出核心图
  • 利用密度泛函和含时密度泛函理论研究了氧(O)和硫(S)原子掺杂的石墨相氮化碳(g-C3N4)6量子点的几何、电子结构和紫外-可见光吸收性质.结果表明:掺杂后(g-C3N4)6量子点杂质原子周围的CN键长发生了一定的改变,最高电子占据分子轨道-最低电子未占据分子轨道(HOMO-LUMO)能隙显著减小.形成能的计算表明O原子取代掺杂的(g-C3N4)6量子点体系更稳定,且O原子更易取代N3位点,而S原子更易取代N8位点.模拟的紫外-可见电子吸收光谱表明,O和S原子的掺杂改善了(g-C3N4)6量子点的光吸收,使其吸收范围覆盖了整个可见光区域,甚至扩展到了红外区.而且适当的杂质浓度使(g-C3N4)6量子点光吸收在强度和范围上都得到明显改善.通过O和S掺杂的比较,发现二者在可见光区对(g-C3N4)6量子点的光吸收有相似的影响,然而在长波长区域二者的影响有明显差异.总体而言,O掺杂要优于S掺杂对(g-C3N4)6量子点光吸收的影响.
      通信作者: 郭平, 1121074564@qq.com;guoping@nwu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21673174)、陕西省自然科学基金(批准号:2014JM2-1008)和2015国家重点实验室瞬态光学与光子技术自然开放基金(批准号:SKLST200915)资助的课题.
    187102-20171006suppl(1).pdf
    对小尺寸(g-C3N4)n 量子点的几何、电子结构及吸收光谱系统研究的部分结果
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R 2014 Chem. Sus. Chem. 7 690

    [3]

    Tan L L, Ong W J, Chai S P, Mohamed A R 2014 Chem. Commun. 50 6923

    [4]

    Chen Y, Wang B, Lin S, Zhang Y, Wang X 2014 J. Phys. Chem. C 118 29981

    [5]

    Ye C, Li J X, Li Z J, Li X B, Fan X B, Zhang L P, Chen B, Tung C H, Wu L Z 2015 ACS Catal. 5 6973

    [6]

    Zhang S L, Wang J X, Huang Y, Zeng M, Xu J 2015 J. Mater. Chem. A 3 10119

    [7]

    Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [8]

    Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G 2004 J. Am. Chem. Soc. 126 4782

    [9]

    Huang Z F, Song J, Pan L, Wang Z, Zhang X, Zou J J, Mi W, Zhang X, Wang L 2015 Nano Energy 12 646

    [10]

    Dong G, Zhao K, Zhang L 2012 Chem. Commun. 48 6178

    [11]

    Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 4646

    [12]

    Xu C, Han Q, Zhao Y, Wang L, Li Y, Qu L J 2015 J. Mater. Chem. A 3 1841

    [13]

    Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S 2016 Appl. Surf. Sci. 360 1016

    [14]

    Li Y, Hu Y, Zhao Y, Shi G Q, Deng L, Hou Y B, Qu L T 2011 Adv. Mater. 23 776

    [15]

    Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z 2012 Energy Environ. Sci. 5 6717

    [16]

    Zhang Z P, Zhang J, Chen N, Qu L T 2012 Energy Environ. Sci. 5 8869

    [17]

    Cao L, Sahu S, Anikumar P, Bunker C E, Xu J, Fernanodo K A S, Wang P, Guliants E A, Tackett K N, Sun Y P 2011 J. Am. Chem. Soc. 133 4754

    [18]

    Song Z P, Lin T R, Lin L H, Lin S, Fu F F, Wang X C, Guo L Q 2016 Angew. Chem. Int. Ed. 55 2773

    [19]

    Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y, Liu R S 2016 Inorg. Chem. 55 10267

    [20]

    Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang C H, Basu M, Pande S 2016 Langmuir 32 10054

    [21]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76

    [22]

    Zhou J, Yang Y, Zhang C Y 2013 Chem. Commun. 49 8605

    [23]

    te Velde G, Bickelhaupt F M, Baerends E J, Fonseca G C, vanGisbergen S J A, Snijders J G, Ziegler T 2001 J. Comput. Chem. 22 931

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [26]

    Casida M E 2009 J. Mol. Struct:Theochem. 914 3

    [27]

    Casida M E, Huix-Rotllant M 2012 Rev. Phys. Chem. 63 287

    [28]

    Schipper P R T, Gritsenko O V, van Gisbergen S J A, Baerends E J 2000 J. Chem. Phys. 112 1344

    [29]

    Liu G, Niu P, Qing L G, Cheng H M 2010 J. Am. Chem. Soc. 132 11642

    [30]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [31]

    Zhang J, Zhang G, Chen X, Lin S, Mohlmann L, Dołega G, Lipner G, Antonietti M, Blechert S, Wang X 2012 Angew. Chem. Int. Ed. 51 3183

    [32]

    Huang Z F, Pan L, Zou J J, Zhang X, Wang L 2014 Nano Scale 6 14044

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R 2014 Chem. Sus. Chem. 7 690

    [3]

    Tan L L, Ong W J, Chai S P, Mohamed A R 2014 Chem. Commun. 50 6923

    [4]

    Chen Y, Wang B, Lin S, Zhang Y, Wang X 2014 J. Phys. Chem. C 118 29981

    [5]

    Ye C, Li J X, Li Z J, Li X B, Fan X B, Zhang L P, Chen B, Tung C H, Wu L Z 2015 ACS Catal. 5 6973

    [6]

    Zhang S L, Wang J X, Huang Y, Zeng M, Xu J 2015 J. Mater. Chem. A 3 10119

    [7]

    Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [8]

    Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G 2004 J. Am. Chem. Soc. 126 4782

    [9]

    Huang Z F, Song J, Pan L, Wang Z, Zhang X, Zou J J, Mi W, Zhang X, Wang L 2015 Nano Energy 12 646

    [10]

    Dong G, Zhao K, Zhang L 2012 Chem. Commun. 48 6178

    [11]

    Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 4646

    [12]

    Xu C, Han Q, Zhao Y, Wang L, Li Y, Qu L J 2015 J. Mater. Chem. A 3 1841

    [13]

    Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S 2016 Appl. Surf. Sci. 360 1016

    [14]

    Li Y, Hu Y, Zhao Y, Shi G Q, Deng L, Hou Y B, Qu L T 2011 Adv. Mater. 23 776

    [15]

    Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z 2012 Energy Environ. Sci. 5 6717

    [16]

    Zhang Z P, Zhang J, Chen N, Qu L T 2012 Energy Environ. Sci. 5 8869

    [17]

    Cao L, Sahu S, Anikumar P, Bunker C E, Xu J, Fernanodo K A S, Wang P, Guliants E A, Tackett K N, Sun Y P 2011 J. Am. Chem. Soc. 133 4754

    [18]

    Song Z P, Lin T R, Lin L H, Lin S, Fu F F, Wang X C, Guo L Q 2016 Angew. Chem. Int. Ed. 55 2773

    [19]

    Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y, Liu R S 2016 Inorg. Chem. 55 10267

    [20]

    Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang C H, Basu M, Pande S 2016 Langmuir 32 10054

    [21]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76

    [22]

    Zhou J, Yang Y, Zhang C Y 2013 Chem. Commun. 49 8605

    [23]

    te Velde G, Bickelhaupt F M, Baerends E J, Fonseca G C, vanGisbergen S J A, Snijders J G, Ziegler T 2001 J. Comput. Chem. 22 931

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [26]

    Casida M E 2009 J. Mol. Struct:Theochem. 914 3

    [27]

    Casida M E, Huix-Rotllant M 2012 Rev. Phys. Chem. 63 287

    [28]

    Schipper P R T, Gritsenko O V, van Gisbergen S J A, Baerends E J 2000 J. Chem. Phys. 112 1344

    [29]

    Liu G, Niu P, Qing L G, Cheng H M 2010 J. Am. Chem. Soc. 132 11642

    [30]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [31]

    Zhang J, Zhang G, Chen X, Lin S, Mohlmann L, Dołega G, Lipner G, Antonietti M, Blechert S, Wang X 2012 Angew. Chem. Int. Ed. 51 3183

    [32]

    Huang Z F, Pan L, Zou J J, Zhang X, Wang L 2014 Nano Scale 6 14044

  • 187102-20171006suppl(1).pdf
    对小尺寸(g-C3N4)n 量子点的几何、电子结构及吸收光谱系统研究的部分结果
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1858
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-05
  • 修回日期:  2017-06-18
  • 刊出日期:  2017-09-05

第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质

  • 1. 西北大学物理学院, 西安 710069;
  • 2. 西北大学光子学与光子技术研究所, 西安 710069;
  • 3. 西北大学现代物理研究所, 西安 710069
  • 通信作者: 郭平, 1121074564@qq.com;guoping@nwu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:21673174)、陕西省自然科学基金(批准号:2014JM2-1008)和2015国家重点实验室瞬态光学与光子技术自然开放基金(批准号:SKLST200915)资助的课题.

摘要: 利用密度泛函和含时密度泛函理论研究了氧(O)和硫(S)原子掺杂的石墨相氮化碳(g-C3N4)6量子点的几何、电子结构和紫外-可见光吸收性质.结果表明:掺杂后(g-C3N4)6量子点杂质原子周围的CN键长发生了一定的改变,最高电子占据分子轨道-最低电子未占据分子轨道(HOMO-LUMO)能隙显著减小.形成能的计算表明O原子取代掺杂的(g-C3N4)6量子点体系更稳定,且O原子更易取代N3位点,而S原子更易取代N8位点.模拟的紫外-可见电子吸收光谱表明,O和S原子的掺杂改善了(g-C3N4)6量子点的光吸收,使其吸收范围覆盖了整个可见光区域,甚至扩展到了红外区.而且适当的杂质浓度使(g-C3N4)6量子点光吸收在强度和范围上都得到明显改善.通过O和S掺杂的比较,发现二者在可见光区对(g-C3N4)6量子点的光吸收有相似的影响,然而在长波长区域二者的影响有明显差异.总体而言,O掺杂要优于S掺杂对(g-C3N4)6量子点光吸收的影响.

English Abstract

参考文献 (32)
补充材料:
187102-20171006suppl(1).pdf
对小尺寸(g-C3N4)n 量子点的几何、电子结构及吸收光谱系统研究的部分结果

目录

    /

    返回文章
    返回