Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulation of solar cell performance by cadmium sulfide/copper-based thin film heterojunction annealing under different atmospheres

Liu Hui-Zhen Liu Bei Dong Jia-Bin Li Jian-Peng Cao Zi-Xiu Liu Yue Meng Ru-Tao Zhang Yi

Citation:

Regulation of solar cell performance by cadmium sulfide/copper-based thin film heterojunction annealing under different atmospheres

Liu Hui-Zhen, Liu Bei, Dong Jia-Bin, Li Jian-Peng, Cao Zi-Xiu, Liu Yue, Meng Ru-Tao, Zhang Yi
PDF
HTML
Get Citation
  • Efficient copper based thin film solar cells usually use inorganic n-type semiconductor material CdS as the buffer layer. Therefore, the interface quality and energy band matching between the buffer layer and the absorption layer are crucial to the collection and utilization of carriers. Heat treatment can promote the mutual diffusion of interface elements, the migration of ions in the material, and the change of defect state, and the appropriate temperature will change the Cu-Zn ordering degree in the absorption layer, so as to improve the efficiency of the solar cells. Based on the optimization of CdS basic process, the strategy of annealing CdS/copper-based thin film heterojunction in sulfur atmosphere further improves the quality of CdS thin film, and is applied to copper-based solar cells to regulate the p-n heterojunction energy band gap matching of copper-based thin film cells. The results show that the annealing of CdS thin film in sulfur-containing inert atmosphere can effectively improve the crystal quality of CdS thin film and inhibit the non-radiative recombination loss caused by defect trapping at the interface of CZTS/CdS heterojunction, and the open-circuit voltage of the device can significantly increase to 718 mV. In addition, annealing CZTS/CdS heterojunction in S/Ar atmosphere can effectively improve the p-n heterojunction energy band gap matching, which not only improves the electron transmission, but also reduces the carrier recombination, thus improving the Voc and FF of the device. Besides, the oxygen element in CdS film can be replaced by sulfur element in sulfur atmosphere to improve the quality of CdS film, and thus enhancing the short-wave absorption of solar cell device. Therefore, in terms of device efficiency, the efficiency of CZTS solar cell based on sputtering method increases from 3.47% to 5.68%, which is about twice that of non-annealing treatment. Its device structure is Glass/Mo/CZTS/CdS/i-ZnO/Al:ZnO/Ni/Al, providing a reliable process window for copper based thin film solar cell devices to achieve high open-circuit voltage. Meanwhile, this study strongly demonstrates the importance of annealing atmosphere selection for CdS quality and energy band matching of CZTS/CdS heterojunction. In addition to interface interdiffusion, the composition and crystallinity of thin film material are controlled.
      Corresponding author: Zhang Yi, yizhang@nankai.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1500200) and the National Natural Science-Yunnan Joint Foundation Key Program of China (Grant No. U1902218).
    [1]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovolt. 9 1863Google Scholar

    [2]

    Gong Y, Zhu Q, Li B, Wang S, Duan B, Lou L, Xiang C, Jedlicka E, Giridharagopal R, Zhou Y, Dai Q, Yan W, Chen S, Meng Q, Xin H 2022 Nat. Energy 7 966Google Scholar

    [3]

    Cheng T, Cai C, Huang W, Xu W, Tu L, Lai C 2020 ACS Appl. Mater. Interfaces 12 18157Google Scholar

    [4]

    Islam M A, Hossain M S, Aliyu M M, Chelvanathan P, Huda Q, Karim M R, Sopian K, Amin N 2013 Energy Procedi 33 203Google Scholar

    [5]

    Sivaraman T, Narasimman V, Nagarethinam V S, Balu A R 2015 Prog. Nat. Sci. 25 392Google Scholar

    [6]

    Neuschitzer M, Sanchez Y, López-Marino S, Xie H B, Fairbrother A, Placidi M, Haass S, Izquierdo-Roca V, Perez-Rodriguez A, Saucedo E 2015 Prog. Photovolt. 23 1660Google Scholar

    [7]

    Zhang S, Yu F, Yuan Q, Wang Y, Wei S, Tesfamichael T, Liang B, Wang H 2019 Sol. Energy Mater. and Sol. Cells 200 109892Google Scholar

    [8]

    Martin N M, Platzer-Björkman C, Simonov K, Rensmo H, Törndahl T 2020 Phys. Status Solidi (b) 257 2000308Google Scholar

    [9]

    Yang K J, Son D H, Sung S J, Sim J H, Kim Y I, Park S N, Jeon D H, Kim J, Hwang D K, Jeon C W, Nam D Y, Cheong H, Kang J K, Kim D H 2016 J. Mater. Chem. A 4 10151Google Scholar

    [10]

    Cui X, Sun K, Huang J, Lee C Y, Yan C, Sun H, Zhang Y, Liu F, Hossain M A, Zakaria Y, Wong L H, Green M, Hoex B, Hao X 2018 Chem. Mater. 30 7860Google Scholar

    [11]

    Guo H, Meng R, Wang G, Wang S, Wu L, Li J, Wang Z, Dong J, Hao X, Zhang Y 2022 Energy Environ. Sci. 15 693Google Scholar

    [12]

    Gutiérrez Lazos C D, Rosendo E, Ortega M, Oliva A I, Tapia O, Díaz T, Juárez H, García G, Rubín M 2009 Mater. Sci. Eng. B 165 74Google Scholar

    [13]

    Rizwan Z, Zakaria A, Mohd Ghazali M S, Jafari A, Din F U, Zamiri R 2011 Int J Mol Sci 12 1293Google Scholar

    [14]

    Tajima S, Umehara M, Hasegawa M, Mise T, Itoh T 2017 Prog. Photovolt. 25 14Google Scholar

    [15]

    Yan C, Huang J, Sun K, Johnston S, Zhang Y, Sun H, Pu A, He M, Liu F, Eder K, Yang L, Cairney J M, Ekins-Daukes N J, Hameiri Z, Stride J A, Chen S Y, Green M A, Hao X 2018 Nat. Energy 3 764Google Scholar

    [16]

    Pham N D, Tiong V T, Yao D, Martens W, Guerrero A, Bisquert J, Wang H 2017 Nano Energy 41 476Google Scholar

    [17]

    Diao A, Thiaw B, Boiro M, Mbodji S, Sissoko 2021 J. Mod. Phys. 12 635Google Scholar

    [18]

    Nisika, Kaur K, Kumar M 2020 J. Mater. Chem. A 8 21547Google Scholar

    [19]

    Scragg J J S, Choubrac L, Lafond A, Ericson T, Platzer-Björkman C 2014 Appl. Phys. Lett. 104 041911Google Scholar

    [20]

    Gokmen T, Gunawan O, Todorov T K, Mitzi D B 2013 Appl. Phys. Lett. 103 103506Google Scholar

    [21]

    Scragg J J, Ericson T, Kubart T, Edoff M, Platzer-Björkman C 2011 Chem. Mater. 23 4625Google Scholar

    [22]

    Zhang S, Wu J, Guo H, Sun Y, Zhou Z, Zhang Y 2021 Phys. Status Solidi (a) 218 2100585Google Scholar

  • 图 1  (a)不同沉积时间对CdS透射光谱的影响; (b) 不同温度下CdS的生长速率; (c) CdS的AFM形貌

    Figure 1.  (a) Influence of different deposition time on CdS transmission spectra; (b) CdS growth rates at different temperatures; (c) AFM topography image of CdS.

    图 2  不同气氛下热处理CZTS/CdS异质结得到的太阳电池的 (a) VOC; (b) JSC; (c) FF; (d) PCE; (e) Rs和(f) Rsh

    Figure 2.  Statistic photovoltaic performance ((a) VOC; (b) JSC; (c) FF; (d) PCE; (e) RS and (f) RSh) of CZTS/CdS heterojunction treated by heat in different atmospheres.

    图 3  不同气氛下热处理CZTS/CdS异质结后电池性能 (a)开路电压与光强的关系; (b)外量子效率; (c)外量子效率比; (d) 根据外量子效率长波吸收边拟合吸收层禁带宽度曲线

    Figure 3.  Characteritic of CZTS/CdS heterojunction treated by heat in different atmospheres (a) VOC versus illumination intensity; (b) external quantum efficiency; (c) external quantum efficiency ratio; (d) Eg curves of absorb layer fitted according to EQE of cells.

    图 4  (a)不退火; (b)空气退火和(c)含硫氩气氛退火处理的CZTS/CdS异质结所制备的太阳电池的Raman谱及其多峰拟合

    Figure 4.  Raman spectra and multi peak fitting of CZTS/CdS heterojunction prepared by (a) no annealing, (b) air annealing, and (c) annealing in sulfur-containing argon atmospheres.

    图 5  (a)不同气氛下热处理CZTS/CdS异质结后CdS表面XPS全谱; (b)—(d) 高分辨S 2p分峰拟合谱; (e) Cd 3d和(f) O 1s的高分辨率谱

    Figure 5.  Full XPS spectra of CdS surface after heat treatment of CZTS/CdS heterojunction under different atmospheres; (b)–(d) high-solution XPS of S 2p split peak fitting spectra; (e) Cd 3d and (f) O 1s high-solution XPS spectra.

    图 6  CdS薄膜在不同气氛下退火后的透射光谱(插图是拟合CdS禁带宽度的Tauc图)

    Figure 6.  Transmission spectra of CdS thin films annealed in different atmospheres (the illustration is the Tauc diagram fitting the CdS band gap width).

    图 7  不同气氛退火后的CdS的XRD衍射图

    Figure 7.  XRD diffraction patterns of CdS after annealing in different atmospheres.

    图 8  薄膜CdS在空气中(a), (b)和含硫气氛中(c), (d)退火后的AFM形貌和KPFM表面势分布; (e)薄膜CdS退火后KPFM表面势统计分布图

    Figure 8.  AFM morphology and KPFM surface potential distribution after annealing of CdS thin films in air (a), (b) and sulfur-containing atmosphere (c), (d); (e) statistical distribution of KPFM surface potential after annealing of CdS thin films.

    图 9  热处理CZTS/CdS异质结不同温度和时间后的电池性能 (a) Jsc-Voc和(b) PCE-FF统计分布

    Figure 9.  Cell performance of heat-treated CZTS/CdS heterojunctions after different temperatures and time: (a) Jsc-Voc and (b) PCE-FF statistical distributions.

    表 1  不同退火气氛下最高效CZTS电池的性能参数

    Table 1.  Detailed device performance parameters of the best CZTS in different atmospheres.

    DeviceVOC/mVJSC/(mA·cm–2)FF/%PCE/%Rs/(Ω·cm2)Rsh/(Ω·cm2)nΦJEQE/(mA·cm–2)
    CdS-wo51915.3143.703.4710.61882.6915.55
    CdS-air52613.9843.873.2311.81302.7814.92
    CdS-S/Ar61116.5156.275.685.63181.8815.89
    DownLoad: CSV

    表 2  CZTS/CdS异质结在不同气氛中退火后CdS表面不同价态的硫的含量比和原子比例

    Table 2.  Ratio of sulfur content and atomic ratio of different valence states on the surface of CdS after annealing of CZTS/CdS heterojunction in different atmospheres.

    [S2–]/[S]/%[S0]/[S]/%[S6+]/[S]/%[S]/[Cd][O]/[S][S2–]/[Cd]
    CdS-wo90.0409.960.472.050.43
    CdS-Air84.73015.280.631.270.54
    CdS-S/Ar76.7123.2901.030.080.79
    DownLoad: CSV

    表 3  在0.5 atm的含硫氩气氛中不同温度和时长热处理CZTS/CdS异质结得到的CZTS电池器件特征参数

    Table 3.  Characteristic parameters of CZTS cell devices obtained by heat treatment of CZTS/CdS heterojunction at different temperatures and durations in sulfur-containing argon atmosphere at 0.5 atm.

    Temperature/℃Time/minVoc/mVPCE/%FF/%Jsc/(A·m-2)
    27555741.8338.7082.5
    30056282.2237.6293.9
    32556582.5137.49101.6
    35057003.2638.44121.0
    275306581.7034.4475.1
    300307183.1134.91124.2
    325307183.6737.66135.9
    350306881.9326.05107.9
    DownLoad: CSV
  • [1]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovolt. 9 1863Google Scholar

    [2]

    Gong Y, Zhu Q, Li B, Wang S, Duan B, Lou L, Xiang C, Jedlicka E, Giridharagopal R, Zhou Y, Dai Q, Yan W, Chen S, Meng Q, Xin H 2022 Nat. Energy 7 966Google Scholar

    [3]

    Cheng T, Cai C, Huang W, Xu W, Tu L, Lai C 2020 ACS Appl. Mater. Interfaces 12 18157Google Scholar

    [4]

    Islam M A, Hossain M S, Aliyu M M, Chelvanathan P, Huda Q, Karim M R, Sopian K, Amin N 2013 Energy Procedi 33 203Google Scholar

    [5]

    Sivaraman T, Narasimman V, Nagarethinam V S, Balu A R 2015 Prog. Nat. Sci. 25 392Google Scholar

    [6]

    Neuschitzer M, Sanchez Y, López-Marino S, Xie H B, Fairbrother A, Placidi M, Haass S, Izquierdo-Roca V, Perez-Rodriguez A, Saucedo E 2015 Prog. Photovolt. 23 1660Google Scholar

    [7]

    Zhang S, Yu F, Yuan Q, Wang Y, Wei S, Tesfamichael T, Liang B, Wang H 2019 Sol. Energy Mater. and Sol. Cells 200 109892Google Scholar

    [8]

    Martin N M, Platzer-Björkman C, Simonov K, Rensmo H, Törndahl T 2020 Phys. Status Solidi (b) 257 2000308Google Scholar

    [9]

    Yang K J, Son D H, Sung S J, Sim J H, Kim Y I, Park S N, Jeon D H, Kim J, Hwang D K, Jeon C W, Nam D Y, Cheong H, Kang J K, Kim D H 2016 J. Mater. Chem. A 4 10151Google Scholar

    [10]

    Cui X, Sun K, Huang J, Lee C Y, Yan C, Sun H, Zhang Y, Liu F, Hossain M A, Zakaria Y, Wong L H, Green M, Hoex B, Hao X 2018 Chem. Mater. 30 7860Google Scholar

    [11]

    Guo H, Meng R, Wang G, Wang S, Wu L, Li J, Wang Z, Dong J, Hao X, Zhang Y 2022 Energy Environ. Sci. 15 693Google Scholar

    [12]

    Gutiérrez Lazos C D, Rosendo E, Ortega M, Oliva A I, Tapia O, Díaz T, Juárez H, García G, Rubín M 2009 Mater. Sci. Eng. B 165 74Google Scholar

    [13]

    Rizwan Z, Zakaria A, Mohd Ghazali M S, Jafari A, Din F U, Zamiri R 2011 Int J Mol Sci 12 1293Google Scholar

    [14]

    Tajima S, Umehara M, Hasegawa M, Mise T, Itoh T 2017 Prog. Photovolt. 25 14Google Scholar

    [15]

    Yan C, Huang J, Sun K, Johnston S, Zhang Y, Sun H, Pu A, He M, Liu F, Eder K, Yang L, Cairney J M, Ekins-Daukes N J, Hameiri Z, Stride J A, Chen S Y, Green M A, Hao X 2018 Nat. Energy 3 764Google Scholar

    [16]

    Pham N D, Tiong V T, Yao D, Martens W, Guerrero A, Bisquert J, Wang H 2017 Nano Energy 41 476Google Scholar

    [17]

    Diao A, Thiaw B, Boiro M, Mbodji S, Sissoko 2021 J. Mod. Phys. 12 635Google Scholar

    [18]

    Nisika, Kaur K, Kumar M 2020 J. Mater. Chem. A 8 21547Google Scholar

    [19]

    Scragg J J S, Choubrac L, Lafond A, Ericson T, Platzer-Björkman C 2014 Appl. Phys. Lett. 104 041911Google Scholar

    [20]

    Gokmen T, Gunawan O, Todorov T K, Mitzi D B 2013 Appl. Phys. Lett. 103 103506Google Scholar

    [21]

    Scragg J J, Ericson T, Kubart T, Edoff M, Platzer-Björkman C 2011 Chem. Mater. 23 4625Google Scholar

    [22]

    Zhang S, Wu J, Guo H, Sun Y, Zhou Z, Zhang Y 2021 Phys. Status Solidi (a) 218 2100585Google Scholar

  • [1] Wang Qi, Yan Ling-Ling, Chen Bing-Bing, Li Ren-Jie, Wang San-Long, Wang Peng-Yang, Huang Qian, Xu Sheng-Zhi, Hou Guo-Fu, Chen Xin-Liang, Li Yue-Long, Ding Yi, Zhang De-Kun, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation. Acta Physica Sinica, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [2] Zhang Bo-Yu, Zhou Jia-Kai, Ren Cheng-Chao, Su Xiang-Lin, Ren Hui-Zhi, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells. Acta Physica Sinica, 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [3] Zhang Yan-Qing, Qi Chun-Hua, Zhou Jia-Ming, Liu Chao-Ming, Ma Guo-Liang, Tsai Hsu-Sheng, Wang Tian-Qi, Huo Ming-Xue. Thermal annealing effects of InGaAs (1.0 eV) and InGaAs (0.7 eV) sub-cells of inverted metamorphic four junction (IMM4J) solar cells under 1 MeV electron irradiation. Acta Physica Sinica, 2020, 69(22): 228802. doi: 10.7498/aps.69.20200557
    [4] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [5] Pan Hong-Ying, Quan Zhi-Jue. Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells. Acta Physica Sinica, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [6] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [7] Xiao Di, Wang Dong-Ming, Li Xun, Li Qiang, Shen Kai, Wang De-Zhao, Wu Ling-Ling, Wang De-Liang. Nickel oxide as back surface field buffer layer in CdTe thin film solar cell. Acta Physica Sinica, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [8] Cao Yu, Xue Lei, Zhou Jing, Wang Yi-Jun, Ni Jian, Zhang Jian-Jun. Developments of c-Si1-xGex:H thin films as near-infrared absorber for thin film silicon solar cells. Acta Physica Sinica, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [9] Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao. Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter. Acta Physica Sinica, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [10] Chen Pei-Zhuan, Hou Guo-Fu, Suo Song, Ni Jian, Zhang Jian-Jun, Zhang Xiao-Dan, Zhao Ying. Simulation, design and fabrication of one-dimensional photonic crystal back reflector for silicon thin film solar cell. Acta Physica Sinica, 2014, 63(12): 128801. doi: 10.7498/aps.63.128801
    [11] Sun Kai-Wen, Su Zheng-Hua, Han Zi-Li, Liu Fang-Yang, Lai Yan-Qing, Li Jie, Liu Ye-Xiang. Erratum:Fabrication of flexible Cu2ZnSnS4 (CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method [Acta Phys. Sin. 2014, 63, 018801]. Acta Physica Sinica, 2014, 63(2): 029901. doi: 10.7498/aps.63.029901
    [12] Sun Kai-Wen, Su Zheng-Hua, Han Zi-Li, Liu Fang-Yang, Lai Yan-Qing, Li Jie, Liu Ye-Xiang. Fabrication of flexible Cu2ZnSnS4 (CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method. Acta Physica Sinica, 2014, 63(1): 018801. doi: 10.7498/aps.63.018801
    [13] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [14] Lai Yan-Qing, Kuang San-Shuang, Liu Fang-Yang, Zhang Zhi-An, Liu Jun, Li Jie, Liu Ye-Xiang. Preparation and characterization of Cu(In, Ga)(Se, S)2 thin films by sulfurization of electrodeposited Cu(In, Ga)Se2 precursors. Acta Physica Sinica, 2010, 59(2): 1196-1201. doi: 10.7498/aps.59.1196
    [15] Zhang Jin-Cheng, Dong Zuo-Dian, Qin Xue-Xue, Zheng Peng-Tian, Liu Lin-Jie, Hao Yue. Analysis of the leakage current in GaN-based heterostructure buffer layer. Acta Physica Sinica, 2009, 58(3): 1959-1965. doi: 10.7498/aps.58.1959
    [16] Zhao Lei, Zhou Chun-Lan, Li Hai-Ling, Diao Hong-Wei, Wang Wen-Jing. Optimizing polymorphous silicon back surface field of a-Si(n)/c-Si(p) heterojunction solar cells by simulation. Acta Physica Sinica, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [17] He Jian-Xiong, Zheng Jia-Gui, Li Wei, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Bing, Lei Zhi, Wu Li-Li, Wang Wen-Wu. A study of back contacts of CdTe thin film solar cells. Acta Physica Sinica, 2007, 56(9): 5548-5553. doi: 10.7498/aps.56.5548
    [18] Xu Ying, Diao Hong-Wei, Zhang Shi-Bin, Li Xu-Dong, Zeng Xiang-Bo, Wang Wen-Jing, Liao Xian-Bo. Deposition of p-type nc-SiC:H thin films with subtle carbon incorporation for applications in p-i-n solar cells. Acta Physica Sinica, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [19] Zeng Guang-Gen, Zheng Jia-Gui, Li Bing, Lei Zhi, Wu Li-Li, Cai Ya-Ping, Li Wei, Zhang Jing-Quan, Cai Wei, Feng Liang-Huan. Polycrystalline CdS/CdTe thin-film solar cells with intrinsic SnO2 films of high resistance. Acta Physica Sinica, 2006, 55(9): 4854-4859. doi: 10.7498/aps.55.4854
    [20] TANG TING-YUAN. ON THE GROWTH VELOCITY OF CADMIUM SULPHIDE SINGLE CRYSTALS. Acta Physica Sinica, 1962, 18(4): 207-210. doi: 10.7498/aps.18.207
Metrics
  • Abstract views:  2258
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2023
  • Accepted Date:  24 February 2023
  • Available Online:  03 March 2023
  • Published Online:  20 April 2023

/

返回文章
返回