Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of 940 nm vertical cavity surface emitting laser single-emitter device

Pan Zhi-Peng Li Wei Lü Jia-Gang Nie Yu-Wei Zhong Li Liu Su-Ping Ma Xiao-Yu

Citation:

Design and fabrication of 940 nm vertical cavity surface emitting laser single-emitter device

Pan Zhi-Peng, Li Wei, Lü Jia-Gang, Nie Yu-Wei, Zhong Li, Liu Su-Ping, Ma Xiao-Yu
PDF
HTML
Get Citation
  • As a key part of vertical cavity surface emitting laser (VCSEL), active region will seriously affect the threshold and efficiency of the device. To obtain the appropriate laser wavelength and material gain, the design of In0.18Ga0.82As strain compensated quantum well is optimized. The relationship between the lasing wavelength of multiple quantum wells (MQWs) and the thickness is calculated. Considering the influence between the active region temperature and the lasing wavelength, the thickness of the quantum well is chosen as 6 nm, and the quantum barrier thickness is chosen as 8 nm, corresponding to the lasing wavelength of 929 nm. The material gain characteristics of the MQWs at different temperatures are simulated by Rsoft. The material gain exceeds 3300/cm at 300 K, and the temperature drift coefficient of the peak wavelength is 0.3 nm/K. In this work, Al0.09Ga0.91As and Al0.89Ga0.11As are chosen as the high- and the low-refractive index material of distributed Bragg reflector (DBR), and 20 nm graded layer is inserted between two types of materials. The influence of the graded layer thickness of DBR on the valence band barrier and reflection spectrum are calculated and analyzed. The increase of graded layer thickness can lead the band barrier peak and the reflection spectrum bandwidth to decrease. The reflection spectrum and phase spectrum of P-DBR and N-DBR are calculated by the transmission matrix mode (TMM): the reflectance of DBR is over 99% and the phase shift is zero at 940 nm. The optical field distribution of the whole VCSEL structure is simulated, in which the standing wave peak overlaps with the active region, and the maximum gain can be obtained. Using the finite element method (FEM), the effect of oxidation confined layer on the injection current is simulated. The current in the active region is effectively limited to the position corresponding to the oxidation confined hole, and its current density is stronger and more uniform. The optical field distributions in different modes of photonic crystal-vertical cavity surface emitting laser (PC-VCSEL) are simulated, and different modes have different resonant wavelengths. The values of quality factor Q in different modes of VCSEL and PC-VCSEL are calculated, Q of the fundamental mode is higher than that of higher transverse mode. It is demonstrated that the photonic crystal air hole structure can realize the output of basic transverse mode by increasing the loss of high order transverse mode. The VCSEL and PC-VCSEL with oxidation hole size of 22 μm are successfully fabricated, in which the photonic crystal period is 5 μm, the air pore diameter is 2.5 μm, and the etching depth is 2 μm. Under continuous current test, the maximum slope efficiency of VCSEL is 0.66 mW/mA, the output power is 9.3 mW at 22 mA, and the lasing wavelength is 948.64 nm at 20 mA injection current. Multiple wavelengths and large spectrum width are observed in the spectrum of VSCEL, which is an obvious multi-transverse mode. The maximum fundamental transverse mode output of PC-VCSEL reaches 2.55 mW, the side mode suppression ratio (SMSR) is more than 25 dB, and the spectrum width is less than 0.2 nm, indicating that the photonic crystal air hole has a strong control effect on the transverse mode, and the laser wavelength is 946.4 nm at 17 mA.
      Corresponding author: Li Wei, liwei66@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62174154).
    [1]

    于洪岩, 尧舜, 张红梅, 王青, 张扬, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮 2019 物理学报 68 064207Google Scholar

    Yu H Y, Yao S, Zhang H M, Wang Q, Zhang Y, Zhou G Z, Lü Z C, Cheng L W, Lang L G, Xia Y, Zhou T B, Kang L H, Wang Z Y, Dong G L 2019 Acta Phys. Sin. 68 064207Google Scholar

    [2]

    陈良惠, 杨国文, 刘育衔 2020 中国激光 47 0500001Google Scholar

    Cheng L H, Yang G W, Liu Y X 2020 Chin. J. Lasers 47 0500001Google Scholar

    [3]

    张继业, 李雪, 张建伟, 宁永强, 王立军 2020 发光学报 41 1443Google Scholar

    Zhang J Y, Li X, Zhang J W, Ning Y Q, Wang L J 2020 Chin. J. Lumin. 41 1443Google Scholar

    [4]

    Warren M E, Podva D, Dacha P, Block M K, Helms C J, Maynard J 2018 Conference on Vertical-Cavity Surface-Emitting Lasers XXII San Francisco, USA, January 31–February 1, 2018 pUNSP 105520 E

    [5]

    Xun M, Pan G, Zhao Z, Sun Y, Yang C, Kan Q, Zhou J, Wu D 2021 IEEE Trans. Electron Devices 68 158Google Scholar

    [6]

    Khan Z, Ledentsov N, Chorchos L, Shih J C, Chang Y H, Ledentsov N N, Shi J W 2020 IEEE Access 8 72095Google Scholar

    [7]

    刘安金 2020 中国激光 47 0701005Google Scholar

    Liu A J 2020 Chin. J. Lasers 47 0701005Google Scholar

    [8]

    Liu A J, Wolf P, Lott J A, Bimberg D 2019 Photonics Res. 7 02000121Google Scholar

    [9]

    王翔媛, 崔碧峰, 李彩芳, 许建荣, 王豪杰 2021 激光与光电子学进展 58 0700008Google Scholar

    Wang X Y, Cui B F, Li C F, Xu J R, Wang H J 2021 Laser Optoelectron. Prog. 58 0700008Google Scholar

    [10]

    Unold H J, Golling M, Michalzik R, Supper D, Ebeling K J 2001 27 th European Conference on Optical Communication Amsterdam, Netherlands, Setember 30–October 4, 2001 p520

    [11]

    Siriani D F, Leisher P O, Choquette K D 2009 IEEE J. Quantum Electron. 45 762Google Scholar

    [12]

    Fryslie S T M, Gao Z H, Dave H, Thompson B J, Lakomy K, Lin S Y, Decker P J, McElfresh D K, Schutt-Aine J E, Choquette K D 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700409Google Scholar

    [13]

    Xie Y Y, Kan Q, Xu C, Xu K, Chen H D 2017 Chin. Phys. B. 26 014203Google Scholar

    [14]

    Wang Q H, Xie Y Y, Xu C, Pan G Z, Dong Y B 2020 Conference on Lasers and Electro-Optics San Jose, USA, May 10–15, 2020 p2021-03-02

    [15]

    Ren Q H, Wang J, Yang M, Wang H J, Cheng Z, Huang Y Q 2020 Quantum Electron. 50 714Google Scholar

    [16]

    晏长岭, 秦莉, 宁永强, 张淑敏, 王青, 赵路民, 刘云, 王立军, 钟景昌 2004 激光杂志 25 29Google Scholar

    Yan C L, Qin L, Ning Y Q, Zhang S M, Wang Q, Zhao L M, Liu Y, Wang L J, Zhong J C 2004 Laser J. 25 29Google Scholar

    [17]

    潘智鹏, 李伟, 吕家纲, 王振诺, 常津源, 刘素平, 仲莉, 马骁宇 2023 中国激光 50 0701007

    Pan Z P, Li W, Lü J G, Wang Z N, Chang J Y, Liu S P, Zhong L, Ma X Y 2023 Chin. J. Lasers 50 0701007

    [18]

    李鹏飞, 邓军, 陈永远, 杨立鹏, 吴波, 徐晨 2013 半导体光电 34 190Google Scholar

    Li P F, Deng J, Chen Y Y, Yang L P, Wu B, Xu C 2013 Semicond. Optoelectron. 34 190Google Scholar

    [19]

    许晓芳, 邓军, 李建军, 张令宇, 任凯兵, 冯媛媛, 贺鑫, 宋钊, 聂祥 2022 半导体光电 43 332Google Scholar

    Xun X X, Deng J, Li J J, Zang L Y, Ren K B, Feng Y Y, He X, Song Z, Nie X 2022 Semicond. Optoelectron. 43 332Google Scholar

    [20]

    Qiao P F, Cook K T, Li K, Chang-Hasnain C J 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700516

    [21]

    Huffaker D L, Deppe D G, Kumar K 1994 Appl. Phys. lett. 65 97Google Scholar

    [22]

    Choquette K D, Geib K M, Chui H C, Hammons B E, Hou H Q, Drummond T J, Hull R 1996 Appl. Phys. Lett. 69 1385Google Scholar

    [23]

    Qi Y Y, Li W, Liu S P, Ma X Y 2019 J. Appl. Phys. 126 193101Google Scholar

    [24]

    潘智鹏, 李伟, 戚宇轩, 吕家纲, 刘素平, 仲莉, 马骁宇 2022 光学学报 42 1414002

    Pan Z P, Li W, Qi YY, Lv J G, Liu S P, Zhong L, Ma X Y 2022 Acta Opt. Sin. 42 1414002

  • 图 1  不同量子阱宽和量子垒宽对应的激射波长

    Figure 1.  Lasing wavelength under different quantum well widths and barrier widths.

    图 2  不同温度下的材料增益特性

    Figure 2.  Material gain spectra at different temperatures.

    图 3  不同渐变层厚度下的DBR价带图

    Figure 3.  Valence-band diagram of DBR under different gradient layer thickness.

    图 4  不同渐变层厚度下的DBR反射谱

    Figure 4.  DBR reflection spectrum under different gradient layer thickness.

    图 5  P-DBR和N-DBR的反射谱和相移谱

    Figure 5.  Reflection spectrum and phase shift spectrum of P-DBR and N-DBR.

    图 6  VCSEL的折射率及归一化电场强度分布

    Figure 6.  Refractive index and normalized electric field distribution of VCSEL.

    图 7  电流分布及光场分布

    Figure 7.  Current distribution and light field distribution.

    图 8  PC-VCSL的不同模式 (a) 基横模, 谐振波长为937.25 nm; (b) 一阶横模, 谐振波长为936.84 nm; (c) 二阶横模, 谐振波长为936.14 nm

    Figure 8.  Different modes of PC-VCSEL: (a) The fundamental transverse mode with resonant wavelength of 937.25 nm; (b) the first order transverse mode with resonant wavelength of 936.84 nm; (c) the second order transverse mode with resonant wavelength of 936.14 nm.

    图 9  VCSEL外延结构 (a) 电致发光谱; (b) 白光反射谱

    Figure 9.  (a) EL spectrum and (b) white light reflection spectrum of VCSEL epitaxial structure.

    图 10  PC-VCSEL工艺流程

    Figure 10.  PC-VCSEL process flow.

    图 11  (a) VCSEL显微镜照片; (b) PC-VCSEL显微镜照片

    Figure 11.  Microscope images of (a) VCSEL and (b) PC-VCSEL.

    图 12  VCSEL单管 (a) L-I-V测试; (b) 光谱测试

    Figure 12.  VCSEL single-emitter: (a) L-I-V test curves; (b) spectrum test results.

    图 13  PC-VCSEL (a) L-I-V测试; (b) 光谱测试

    Figure 13.  PC-VCSEL: (a) L-I-V test curves; (b) spectrum test results.

    表 1  不同结构下各个模式对应的品质因子

    Table 1.  The quality factor of each mode under different structure.

    基横模一阶横模二阶横模
    PC-VCSEL623826461373
    VCSEL106141061210602
    DownLoad: CSV
  • [1]

    于洪岩, 尧舜, 张红梅, 王青, 张扬, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮 2019 物理学报 68 064207Google Scholar

    Yu H Y, Yao S, Zhang H M, Wang Q, Zhang Y, Zhou G Z, Lü Z C, Cheng L W, Lang L G, Xia Y, Zhou T B, Kang L H, Wang Z Y, Dong G L 2019 Acta Phys. Sin. 68 064207Google Scholar

    [2]

    陈良惠, 杨国文, 刘育衔 2020 中国激光 47 0500001Google Scholar

    Cheng L H, Yang G W, Liu Y X 2020 Chin. J. Lasers 47 0500001Google Scholar

    [3]

    张继业, 李雪, 张建伟, 宁永强, 王立军 2020 发光学报 41 1443Google Scholar

    Zhang J Y, Li X, Zhang J W, Ning Y Q, Wang L J 2020 Chin. J. Lumin. 41 1443Google Scholar

    [4]

    Warren M E, Podva D, Dacha P, Block M K, Helms C J, Maynard J 2018 Conference on Vertical-Cavity Surface-Emitting Lasers XXII San Francisco, USA, January 31–February 1, 2018 pUNSP 105520 E

    [5]

    Xun M, Pan G, Zhao Z, Sun Y, Yang C, Kan Q, Zhou J, Wu D 2021 IEEE Trans. Electron Devices 68 158Google Scholar

    [6]

    Khan Z, Ledentsov N, Chorchos L, Shih J C, Chang Y H, Ledentsov N N, Shi J W 2020 IEEE Access 8 72095Google Scholar

    [7]

    刘安金 2020 中国激光 47 0701005Google Scholar

    Liu A J 2020 Chin. J. Lasers 47 0701005Google Scholar

    [8]

    Liu A J, Wolf P, Lott J A, Bimberg D 2019 Photonics Res. 7 02000121Google Scholar

    [9]

    王翔媛, 崔碧峰, 李彩芳, 许建荣, 王豪杰 2021 激光与光电子学进展 58 0700008Google Scholar

    Wang X Y, Cui B F, Li C F, Xu J R, Wang H J 2021 Laser Optoelectron. Prog. 58 0700008Google Scholar

    [10]

    Unold H J, Golling M, Michalzik R, Supper D, Ebeling K J 2001 27 th European Conference on Optical Communication Amsterdam, Netherlands, Setember 30–October 4, 2001 p520

    [11]

    Siriani D F, Leisher P O, Choquette K D 2009 IEEE J. Quantum Electron. 45 762Google Scholar

    [12]

    Fryslie S T M, Gao Z H, Dave H, Thompson B J, Lakomy K, Lin S Y, Decker P J, McElfresh D K, Schutt-Aine J E, Choquette K D 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700409Google Scholar

    [13]

    Xie Y Y, Kan Q, Xu C, Xu K, Chen H D 2017 Chin. Phys. B. 26 014203Google Scholar

    [14]

    Wang Q H, Xie Y Y, Xu C, Pan G Z, Dong Y B 2020 Conference on Lasers and Electro-Optics San Jose, USA, May 10–15, 2020 p2021-03-02

    [15]

    Ren Q H, Wang J, Yang M, Wang H J, Cheng Z, Huang Y Q 2020 Quantum Electron. 50 714Google Scholar

    [16]

    晏长岭, 秦莉, 宁永强, 张淑敏, 王青, 赵路民, 刘云, 王立军, 钟景昌 2004 激光杂志 25 29Google Scholar

    Yan C L, Qin L, Ning Y Q, Zhang S M, Wang Q, Zhao L M, Liu Y, Wang L J, Zhong J C 2004 Laser J. 25 29Google Scholar

    [17]

    潘智鹏, 李伟, 吕家纲, 王振诺, 常津源, 刘素平, 仲莉, 马骁宇 2023 中国激光 50 0701007

    Pan Z P, Li W, Lü J G, Wang Z N, Chang J Y, Liu S P, Zhong L, Ma X Y 2023 Chin. J. Lasers 50 0701007

    [18]

    李鹏飞, 邓军, 陈永远, 杨立鹏, 吴波, 徐晨 2013 半导体光电 34 190Google Scholar

    Li P F, Deng J, Chen Y Y, Yang L P, Wu B, Xu C 2013 Semicond. Optoelectron. 34 190Google Scholar

    [19]

    许晓芳, 邓军, 李建军, 张令宇, 任凯兵, 冯媛媛, 贺鑫, 宋钊, 聂祥 2022 半导体光电 43 332Google Scholar

    Xun X X, Deng J, Li J J, Zang L Y, Ren K B, Feng Y Y, He X, Song Z, Nie X 2022 Semicond. Optoelectron. 43 332Google Scholar

    [20]

    Qiao P F, Cook K T, Li K, Chang-Hasnain C J 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700516

    [21]

    Huffaker D L, Deppe D G, Kumar K 1994 Appl. Phys. lett. 65 97Google Scholar

    [22]

    Choquette K D, Geib K M, Chui H C, Hammons B E, Hou H Q, Drummond T J, Hull R 1996 Appl. Phys. Lett. 69 1385Google Scholar

    [23]

    Qi Y Y, Li W, Liu S P, Ma X Y 2019 J. Appl. Phys. 126 193101Google Scholar

    [24]

    潘智鹏, 李伟, 戚宇轩, 吕家纲, 刘素平, 仲莉, 马骁宇 2022 光学学报 42 1414002

    Pan Z P, Li W, Qi YY, Lv J G, Liu S P, Zhong L, Ma X Y 2022 Acta Opt. Sin. 42 1414002

  • [1] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] Wang Zhi-Peng, Zhang Feng, Yang Jia-Wei, Li Peng-Tao, Guan Bao-Lu. Thermal characteristics of surface liquid crystal vertical cavity surface emitting laser arrays. Acta Physica Sinica, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [3] Yu Hong-Yan, Yao Shun, Zhang Hong-Mei, Wang Qing, Zhang Yang, Zhou Guang-Zheng, Lü Zhao-Chen, Cheng Li-Wen, Lang Lu-Guang, Xia Yu, Zhou Tian-Bao, Kang Lian-Hong, Wang Zhi-Yong, Dong Guo-Liang. Design and fabrication of 940 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [4] Zhang Hao, Guo Xing-Xing, Xiang Shui-Ying. Key distribution based on unidirectional injection of vertical cavity surface emitting laser system. Acta Physica Sinica, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [5] Zhou Guang-Zheng, Yao Shun, Yu Hong-Yan, Lü Zhao-Chen, Wang Qing, Zhou Tian-Bao, Li Ying, Lan Tian, Xia Yu, Lang Lu-Guang, Cheng Li-Wen, Dong Guo-Liang, Kang Lian-Hong, Wang Zhi-Yong. Optimized design and epitaxy growth of high speed 850 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [6] Guan Bao-Lu, Liu Xin, Jiang Xiao-Wei, Liu Chu, Xu Chen. Multi-transverse-mode and wavelength split characteristics of vertical cavity surface emitting laser. Acta Physica Sinica, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [7] Deng Wei, Xia Guang-Qiong, Wu Zheng-Mao. Dual-channel chaos synchronization and communication based on a vertical-cavity surface emitting laser with double optical feedback. Acta Physica Sinica, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [8] Liu Fa, Xu Chen, Zhao Zhen-Bo, Zhou Kang, Xie Yi-Yang, Mao Ming-Ming, Wei Si-Min, Cao Tian, Sheng Guang-Di. Study on influence of oxide aperture shape on modal characteristics of VCSELs. Acta Physica Sinica, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [9] Mao Ming-Ming, Xu Chen, Wei Si-Min, Xie Yi-Yang, Liu Jiu-Cheng, Xu Kun. The effects of proton implant energy on threshold and output power of vertical cavity surface emitting laser. Acta Physica Sinica, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [10] Hao Yong-Qin, Feng Yuan, Wang Fei, Yan Chang-Ling, Zhao Ying-Jie, Wang Xiao-Hua, Wang Yu-Xia, Jiang Hui-Lin, Gao Xin, Bo Bao-Xue. 808nm vertical-cavity surface-emitting laser with large aperture. Acta Physica Sinica, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [11] Xue Li-Fang, Zhang Qiang, Li Fang, Zhou Yan, Liu Yu-Liang. High-frequency modulation, high-power and narrow-linewidth distributed feedback fiber laser. Acta Physica Sinica, 2011, 60(1): 014213. doi: 10.7498/aps.60.014213
    [12] Liu An-Jin, Xing Ming-Xin, Qu Hong-Wei, Chen Wei, Zhou Wen-Jun, Zheng Wan-Hua. Control of the photonic crystal waveguide over the beam profile of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2010, 59(2): 1035-1039. doi: 10.7498/aps.59.1035
    [13] Wang Bao-Qiang, Xu Chen, Liu Ying-Ming, Xie Yi-Yang, Liu Fa, Zhao Zhen-Bo, Zhou Kang, Shen Guang-Di. Study on current spreading of photonic crystal vertical cavity surface emitting lasers. Acta Physica Sinica, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [14] Yang Hao, Guo Xia, Guan Bao-Lu, Wang Tong-Xi, Shen Guang-Di. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [15] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [16] Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling, Shen Guang-Di. Effects of optimized contact scheme on the performance of high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [17] Tong Cun-Zhu, Niu Zhi-Chuan, Han Qin, Wu Rong-Han. Design and analysis of 1.3μm GaAs-based quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [18] Zhao Hong-Dong, Song Dian-You, Zhang Zhi-Feng, Sun Ji ng, Sun Mei, Wu Yi, Wen Xing-Rao. Influence of the potential in n-type DBR on threshold in vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [19] Zhao Hong Dong, Kang ZhiLong, Wang Sheng Li, Chen Guo Ying, Zhang YiMo. Microcavity effects in the high modulation response of thevertical cavity surface emitting laser. Acta Physica Sinica, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
    [20] LIAN PENG, YIN TAO, GAO GUO, ZOU DE-SHU, CHEN CHANG-HUA, LI JIAN-JUN, SHEN GUANG-DI, MA XIAO-YU, CHEN LIANG-HUI. NOVEL COUPLED MULTI-ACTIVE REGION HIGH POWER SEMICONDUCTOR LASERS CASCADED VIA T UNNEL JUNCTION. Acta Physica Sinica, 2000, 49(12): 2374-2377. doi: 10.7498/aps.49.2374
Metrics
  • Abstract views:  2245
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2023
  • Accepted Date:  01 April 2023
  • Available Online:  11 April 2023
  • Published Online:  05 June 2023

/

返回文章
返回