Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of physics of electrowetting display devices

Liu Fei-Long Cheng Yan-Kun Zhang Jing-Heng Tang Biao Zhou Guo-Fu

Citation:

Research progress of physics of electrowetting display devices

Liu Fei-Long, Cheng Yan-Kun, Zhang Jing-Heng, Tang Biao, Zhou Guo-Fu
PDF
HTML
Get Citation
  • Electrowetting refers to the phenomenon of modifying the surface tension between a liquid and a solid by adjusting the externally applied electric potential between the liquid and solid electrodes, thereby changing the contact angle between the two and causing a deformation and displacement of the droplets. Electrowetting electronic paper display is a new reflective “paper-like” display technology based on a rapid response microfluidic control technology. It has the advantages of low energy consumption, visual health, and flexibility of commercial electrophoretic electronic paper display products, while breaking through the bottlenecks of “full-color” and “video-speed response” that currently restrict the application of electronic paper display technology. In this paper, several physical directions involved in electrowetting display devices, especially wetting and electrowetting, binary phase fluid mechanics, microscopic and interfacial physics, photophysics, dielectric physics, thermophysics, and transient physics, are systematically reviewed; the basic principles of device operation, microscopic and mesoscopic physical pictures, internal mechanisms of device operation, and device reliability are also discussed in detail.
      Corresponding author: Tang Biao, tangbiao@scnu.edu.cn ; Zhou Guo-Fu, guofu.zhou@m.scnu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3600602), the National Natural Science Foundation of China (Grant Nos. 62005083, 52175403), the Key Support Program for Foreign Experts of the Ministry of Science and Technology of China (Grant No. zcgx2022002L), the Overseas High Level Talent Introduction Program (Top Youth) of Guangdong Province, China (Grant No. 2021QN02X369), the “Guangdong Special Supprot Program” Local Innovative and Entrepreneurship Teams, China (Grant No. 2019BT02C241), the Program for Chang Jiang Scholars and Innovative Research Teams in Universities of Ministry of Education of China (Grant No. IRT 17R40), the Guangdong Key Laboratory of Optical Information Materials and Technology, China (Grant No. 2017B030301007), the Guangzhou Key Laboratory of Electronic Paper Displays Materials and Devices, China (Grant No. 201705030007), the Joint Laboratory of Optical Information International Cooperation of Ministry of Education, China, and the 111 Project, China.
    [1]

    Lueder E, Knoll P, Lee S H 2022 Liquid Crystal Displays: Addressing Schemes and ElectroOptical Effects (3rd Ed.) (Hoboken, United States: John Wiley & Sons Ltd.

    [2]

    Chen H W, Lee J H, Lin B Y, Chen S, Wu S T 2018 Light-Sci. Appl. 7 17168

    [3]

    Tsujimura T 2017 OLED Displays Fundamentals and Applications (2nd Ed.) (Hoboken, United States: John Wiley & Sons Ltd.

    [4]

    Shu Y, Lin X, Qin H, Hu Z, Jin Y, Peng X 2020 Angew. Chem. Int. Ed. 59 22312Google Scholar

    [5]

    周国富 2021 电子纸显示技术 (北京: 科学出版社)

    Zhou G 2021 Electronic Paper Display Technology (Beijing: Science Press

    [6]

    Yang B R 2022 E-Paper Displays (Hoboken, United States: John Wiley & Sons Ltd.

    [7]

    Rogers J A 2001 Science 291 1502Google Scholar

    [8]

    Shui L, Hayes R A, Jin M, Zhang X, Bai P, van den Berg A, Zhou G 2014 Lab Chip 14 2374Google Scholar

    [9]

    Bhowmik A K, Li Z, Bos P J 2008 Mobile Displays: Technology and Applications (Hoboken, United States: John Wiley & Sons Ltd.

    [10]

    Heikenfeld J, Drzaic P, Yeo J S, Koch T 2011 J. Soc. Inf. Display 19 129Google Scholar

    [11]

    Beni G, Hackwood S 1981 Appl. Phys. Lett. 38 207Google Scholar

    [12]

    Beni G, Tenan M A 1981 J. Appl. Phys. 52 6011Google Scholar

    [13]

    Lippman G 1875 Annales de Chimie et de Physique 5 494

    [14]

    Berge B 1993 Comptes Rendus De Lacademie Des Sciences Paris Serie II 317 157

    [15]

    Hayes R A, Feenstra B J 2003 Nature 425 383Google Scholar

    [16]

    Chevalliot S, Heikenfeld J, Clapp L, Milarcik A, Vilner S 2011 J. Disp. Technol. 7 649Google Scholar

    [17]

    Mugele F, Baret J C 2005 J. Phys. Condens. Matter 17 R705Google Scholar

    [18]

    Grilli S, Miccio L, Vespini V, Finizio A, De Nicola S, Ferraro P 2008 Opt. Express 16 8084Google Scholar

    [19]

    Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R 2010 Chem. Soc. Rev. 39 1153Google Scholar

    [20]

    Sur A, Lu Y, Pascente C, Ruchhoeft P, Liu D 2018 Int. J. Heat Mass Transfer 120 202Google Scholar

    [21]

    Krupenkin T, Taylor J A 2011 Nat. Commun. 2 448Google Scholar

    [22]

    Lee J, Kim C J 2000 J. Microelectromech. Syst. 9 171Google Scholar

    [23]

    Walker S, Shapiro B 2006 J. Microelectromech. Syst. 15 986Google Scholar

    [24]

    Jones T 2005 J. Micromech. Microeng. 15 1184Google Scholar

    [25]

    Digilov R 2000 Langmuir 16 6719Google Scholar

    [26]

    Oh J M, Ko S H, Kang K H 2010 Phys. Fluids 22 032002Google Scholar

    [27]

    Zeng J, Korsmeyer T 2004 Lab Chip 4 265Google Scholar

    [28]

    Jones T B 2002 Langmuir 18 4437Google Scholar

    [29]

    Kang K H 2002 Langmuir 18 10318Google Scholar

    [30]

    Papathanasiou A G, Boudouvis A G 2005 Appl. Phys. Lett. 86 164102Google Scholar

    [31]

    Mugele F 2009 Soft Matter 5 3377Google Scholar

    [32]

    Bienia M, Mugele F, Quilliet C, Ballet P 2004 Physica A 339 72Google Scholar

    [33]

    Verheijen H J J, Prins M W J 1999 Langmuir 15 6616Google Scholar

    [34]

    Shapiro B, Moon H, Garrell R L, Kim C J 2003 J. Appl. Phys. 93 5794Google Scholar

    [35]

    Song F, Ma B, Fan J, Chen Q, Li B Q 2019 Langmuir 35 9753Google Scholar

    [36]

    Liu J, Wang M, Chen S, Robbins M O 2012 Phys. Rev. Lett. 108 216101Google Scholar

    [37]

    Daub C D, Bratko D, Luzar A 2011 J. Phys. Chem. C 115 22393Google Scholar

    [38]

    Łukaszewicz G, Kalita P 2016 Navier-Stokes Equations An Introduction with Applications (Cham, Switzerland: Springer

    [39]

    Mohamad A A 2011 Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes (Heidelberg, Germany: Springer-Verlag

    [40]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用(北京: 科学出版社)

    He Y, Wang Y, Li Q 2009 Lattice Boltzmann Method Theory and Applications (Beijing: Science Press

    [41]

    Guo Z, Shu C 2013 Lattice Boltzmann Method and its Applications in Engineering (Singapore: World Scientific

    [42]

    Bray A J 1994 Adv. Phys. 43 357Google Scholar

    [43]

    Cahn J W, Hillard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [44]

    Landau L D, Litshitz E M 1980 Statistical Physics Part 1 Course of Theoretical Physics (Oxford, United Kingdom: Butterworth-Heinemann

    [45]

    Briant A J, Wagner A J, Yeomans J M 2004 Phys. Rev. E 69 031602

    [46]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041Google Scholar

    [47]

    Fornberg B 1988 Math. Comput. 51 699Google Scholar

    [48]

    李庆扬 2008 数值分析(第5版)(北京: 清华大学出版社)

    Li Q 2008 Numerical Analysis (5th Ed.) (Beijing: Tsinghua University Press

    [49]

    Liu H, Kang Q, Leonardi C R, Schmieschek S, Narváez A, Jones B D, Williams J R, Valocchi A J, Harting J 2016 Comput. Geosci. 20 777Google Scholar

    [50]

    Sharma K V, Straka R, Tavares F W 2019 Ind. Eng. Chem. Res. 58 16205Google Scholar

    [51]

    Satofuka N, Nishioka T 1999 Comput. Mech. 23 164Google Scholar

    [52]

    Wichmann K R K 2019 Ph. D. Dissertation (Munich, Germany: Technische Universität München

    [53]

    Chen S, Doolen G D 1988 Annu. Rev. Fluid Mech. 30 329

    [54]

    Qian Y H, D’Humières D, Lallemand P 1992 EPL 17 479Google Scholar

    [55]

    Ruiz-Gutierrez E, Ledesma-Aguilar R 2019 Langmuir 35 4849Google Scholar

    [56]

    Ren X, Wei S, Qu X, Liu F 2019 AIP Adv. 9 055021Google Scholar

    [57]

    Liu H, Zhang Y 2015 J. Comput. Phys. 280 37Google Scholar

    [58]

    Liu H H, Valocchi A J, Kang Q J 2012 Phys. Rev. E 85 046309Google Scholar

    [59]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045Google Scholar

    [60]

    Connington K, Lee T 2013 J. Comput. Phys. 250 601Google Scholar

    [61]

    Fogolari F, Brigo A, Molinari H 2002 J. Mol. Recognit. 15 379

    [62]

    Butt H, Graf L, Kappl M 2006 Physics and Chemistry of Interfaces (2nd Ed.) (Weinheim, Germany: Wiley-VCH

    [63]

    Good R J 1992 J. Adhes. Sci. Technol. 6 1269Google Scholar

    [64]

    Shi Z, Zhang Y, Liu M, Hanaor D A H, Gan Y 2018 Colloids Surf. , A 555 365Google Scholar

    [65]

    Johnson R E 1993 Wettability (New York, United States: Marcel Dekker Inc.

    [66]

    De Gennes P G 1994 Soft Interfaces (Cambridge, United Kingdom: Cambridge University Press

    [67]

    Marmur A 2003 Langmuir 19 8343Google Scholar

    [68]

    Chen X, Ma R, Li J, Hao C, Guo W, Luk B L, Li S C, Yao S, Wang Z 2012 Phys. Rev. Lett. 109 116101Google Scholar

    [69]

    Marmur A 1992 Modern Approach to Wettability: Theory and Applications (New York, United States: Plenum Press

    [70]

    刘志浩 2022 硕士学位论文(广州: 华南师范大学)

    Liu Z 2022 M. S. Thesis (Guangzhou: South China Normal University

    [71]

    Zhou R, Ye Q, Li H, Jiang H, Tang B, Zhou G 2019 Results Phys. 12 1991Google Scholar

    [72]

    Bard A, Faulkner L 2001 Electrochemical Methods Fundamentals and Applications (2nd Ed.) (Hoboken, United States: John Wiley & Sons Inc.

    [73]

    邓勇, 唐彪, 郭媛媛, 蒋洪伟, 周蕤, Hayes R A, 周国富 2016 华南师范大学学报(自然科学版) 48 31

    Deng Y, Tang B, Guo Y, Jiang H, Zhou R, Hayes R A, Zhou G 2016 Journal of South China Normal University: Natural Sciences 48 31

    [74]

    Deng Y, Li S, Ye D, Jiang H, Tang B, Zhou G 2020 Micromachines 11 81Google Scholar

    [75]

    Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P 2015 J. Am. Chem. Soc. 137 3799Google Scholar

    [76]

    Li S, Ye D, Henzen A, Deng Y, Zhou G 2020 New J. Chem. 44 415Google Scholar

    [77]

    Lee P T C, Chiu C W, Lee T M, Chang T Y, Wu M T, Cheng W Y, Kuo S W, Lin J J 2013 ACS Appl. Mater. Interfaces 5 5914Google Scholar

    [78]

    Lee P T C, Chiu C W, Chang L Y, Chou P Y, Lee T M, Chang T Y, Wu M T, Cheng W Y, Kuo S W, Lin J J 2014 ACS Appl. Mater. Interfaces 6 14345Google Scholar

    [79]

    Blankenbach K, Yan Q, O’Brien R J 2020 Handbook of Visual Display Technology (Cham, Switzerland: Springer

    [80]

    Kuo S W, Chang Y P, Cheng W Y, Lo K L, Lee D W, Lee H H, Chen K T, Tsai Y H, Chen Y C, Chiu Y H, Chiu W W, Fuh S Y, Sun R L, Su P J, Wang C W, Lee K C, Shiu J W 2009 SID Int. Symp. Dig. Tech. Pap. 40 483Google Scholar

    [81]

    Giraldo A, Aubert J, Bergeron N, Derckx E, Feenstra B J, Massard R, Mans J, Slack A, Vermeulen P 2010 J. Soc. Inf. Display 18 317Google Scholar

    [82]

    You H, Steckl A J 2010 Appl. Phys. Lett. 97 023514Google Scholar

    [83]

    郭媛媛, 蒋洪伟, 袁冬, 唐彪, 周国富 2022 液晶与显示 37 925Google Scholar

    Guo Y, Jiang H, Yuan D, Tang B, Zhou G 2022 Chin. J. Liq. Cryst. Disp. 37 925Google Scholar

    [84]

    Ivanova N 2020 Philos. Trans. R. Soc. London, Ser. A 378 20190442

    [85]

    Song X, Zhang H, Li D, Jia D, Liu T 2020 Sci. Rep. 10 16318Google Scholar

    [86]

    Supekar O D, Zohrabi M, Gopinath J T, Bright V M 2017 Langmuir 33 4863Google Scholar

    [87]

    Lee J K, Park K W, Kim H R, Kong S H 2011 Sens. Actuators, B 160 1593Google Scholar

    [88]

    Hapsari A, Won Y H 2014 Aunual Conference on Oxide-based Materials and Devices V at SPIE Photonics West, San Francisco, CA, February 2–5, 2014 p89871S

    [89]

    Xia Y, Chen J, Zhu Z, Zhang Q, Yang H, Wang Q 2018 RSC Adv. 8 4032Google Scholar

    [90]

    Rosa P 2015 Ph. D. Dissertation (Lisbon, Portugal: New University of Lisbon

    [91]

    Vandelli L, Padovani A, Larcher L, Southwick R G, Knowlton W B, Bersuker G 2011 IEEE Trans. Electron Devices 58 2878Google Scholar

    [92]

    Jegert G, Kersch A, Weinreich W, Schörder U, Lugli P 2010 Appl. Phys. Lett. 96 062113Google Scholar

    [93]

    Liu F, Liu Y Y, Li L, Zhou G, Jiang X, Luo J W 2020 Phys. Rev. Appl. 13 024020Google Scholar

    [94]

    Zhou R, Fu S, Jiang H, Li X, Zhou G 2019 Results Phys. 15 102737Google Scholar

    [95]

    Padovani A, Gao D Z, Shluger A L, Larcher L 2017 J. Appl. Phys. 121 155101Google Scholar

    [96]

    Zhang Q, Yu L, Bian Z, Yuan D, Sun H, Tang B, Lu X, Liu F, Zhou G 2023 Phys. Rev. Appl. 19 024008Google Scholar

    [97]

    Jones T B 2001 J. Electrostat. 51 290

    [98]

    R-Gutiérrez É, Edwards A M J, McHale G, Newton M I, Wells G G, Brown C V, L-Aguilar R 2021 Langmuir 37 7328Google Scholar

    [99]

    Dixit H N, Babu V 2006 Int. J. Heat Mass Transfer 49 727Google Scholar

    [100]

    Ko S H, Lee S J, Kang K H, 2009 Appl. Phys. Lett. 94 194102Google Scholar

    [101]

    Tang B, Groenewold J, Zhou M, Hayes R A, Zhou G 2016 Sci. Rep. 6 26593Google Scholar

    [102]

    Tonks L 1936 Phys. Rev. 48 562

    [103]

    Schaeffer E, Thurn-Albrecht T, Russell T P, Steiner U 2000 Nature 403 874Google Scholar

    [104]

    González H, Surgy G N D, Chabrerie J P 1994 Phys. Rev. B 50 2520Google Scholar

    [105]

    Yi Z, Shui L, Wang L, Jin M, Hayes R A, Zhou G 2015 Displays 37 86Google Scholar

    [106]

    Luo Z J, Zhang W N, Liu L W, Xie S, Zhou G 2016 J. Soc. Inf. Disp. 24 345Google Scholar

  • 图 1  主流显示器件类型及其工作原理 (a) LCD液晶显示, 对背光源透射光进行调制; (b) OLED有机发光显示, 利用电光转换实现自发光; (c) E-Paper电子纸显示, 对环境光的反射进行调制

    Figure 1.  Working principles of mainstream display devices: (a) LCD (liquid crystal) display, based on modulation of backlight transmisssion; (b) OLED (organic light-emitting) display, based on self-emission by conversion from electricity to light; (c) E-Paper (electronic paper) display, based on modulation of reflective light from environment.

    图 2  电泳电子纸显示原理. 微胶囊包裹的两色电异性颗粒体系, 通过施加电场的极性及强度控制颗粒运动, 实现白色(左)、灰色(中)、黑色(右)等灰阶显示

    Figure 2.  Working principles of electrophoretic e-paper display. Microcapsules are composed of positively charged white pigment chips and negatively charged black pigment chips. Particle motion is controlled by polarity and strength of external electric fields, resulting in display of white (left), grey (middle), and black (right) colors.

    图 3  电润湿电子纸显示原理. 像素单元内两相流体体系通过施加电场强度控制油水界面运动, 实现灰阶调控 (a) 未加电状态; (b) 加电状态

    Figure 3.  Working principles of electrowetting e-paper display. Binary phase fluids composed of colored oil and transparent water are controlled by strength of external electric fields, resulting in color modulation: (a) Without electric bias; (b) with electric bias.

    图 4  电润湿原理示意图

    Figure 4.  Schematics of electrowetting.

    图 5  三相接触线及固液表面附近的电场力分布

    Figure 5.  Electric force distribution at the solid-liquid interface and near the three-phase contact line.

    图 6  实验中典型的电润湿曲线

    Figure 6.  Typical electrowetting characteristics in experiments

    图 7  流体体系基础理论研究方法 (a) 微观尺度: 分子动力学; (b) 介观尺度: 格子玻尔兹曼方法; (c) 宏观尺度: 纳维斯托克斯方程

    Figure 7.  Fundamental theoretical methods for fluid systems: (a) Microscopic scale: molecular dynamics; (b) mesoscopic scale: lattice Boltzmann method; (c) macroscopic scale: Navier-Stokes equation.

    图 8  格子玻尔兹曼方法流体力学计算流程

    Figure 8.  Process of lattice Boltzmann method for computational fluid mechanics.

    图 9  固液界面加电条件下的离子分布 (a) Helmholtz模型; (b) Gouy-Chapman模型; (c) Gouy-Chapman-Stern模型

    Figure 9.  Ion distribution near solid-liquid interfaces under electric stress: (a) Helmholtz model; (b) Gouy-Chapman model; (c) Gouy-Chapman-Stern model.

    图 10  液滴在粗糙固体表面形成的不同润湿状态 (a) Wenzel状态[67]; (b) Cassie-Baxter状态[67]

    Figure 10.  Different wetting states of a liquid droplet at a rough solid surface: (a) Wenzel state[67]; (b) Cassie-Baxter state[67].

    图 11  几何结构导致的钉扎/去钉扎效应示意图 (a) 接触角等于$ \theta $; (b) 接触角等于$ \theta + \alpha $; (c) 接触角大于$ \theta + \alpha $

    Figure 11.  Pinning/depinning effect due to geometric structures: (a) Contact angle = $ \theta $; (b) contact angle = $ \theta + \alpha $; (c) contact angle >$ \theta + \alpha $.

    图 12  润湿梯度导致的钉扎/去钉扎效应示意图 (a) 通过表面改性方法制备的不同几何图案的润湿梯度[70]; (b) 测量得到的润湿角与填充液体体积关系[70]

    Figure 12.  Pinning/depinning effect due to wetting gradients: (a) Wetting gradient patterns fabricated by surface treatment processes[70]; (b) measured contact angle as a function of droplet volume[70].

    图 13  电润湿显示器件中电荷转移导致的电化学反应与器件老化机制[71]

    Figure 13.  Charge transfer induced electrochemical reactions and degradation mechanisms in electrowetting display devices[71].

    图 14  蒽醌型电润湿显示染料结构式[73]

    Figure 14.  Chemical structure of anthraquinone-type dye molecules for electrowetting display[73].

    图 15  偶氮苯环型电润湿显示染料结构式

    Figure 15.  Chemical structure of azobenzene-type dye molecules for electrowetting display.

    图 16  吡唑啉酮型电润湿显示染料结构式[74]

    Figure 16.  Chemical structure of pyrazolone-type dye molecules for electrowetting display[74].

    图 17  金属络合类电润湿显示染料结构式

    Figure 17.  Chemical structure of metal-complex-type dye molecules for electrowetting display.

    图 18  有机苝型电润湿显示染料结构式

    Figure 18.  Chemical structure of organic-perylene-type dye molecules for electrowetting display.

    图 19  实际的各色电润湿显示油墨及其吸收光谱

    Figure 19.  Practical various-color oils for electrowetting display and their absorption spectra.

    图 20  基于彩色滤光片的全彩电润湿显示结构[80]

    Figure 20.  Full-color electrowetting display device structure based on color filters[80].

    图 21  基于彩色滤光片的透射式全彩电润湿显示屏 (a) θ~0º[81]; (b) θ~50º[81]

    Figure 21.  Transmissive full-color electrowetting display screens based on color filters: (a) θ~0º[81]; (b) θ~50º[81].

    图 22  基于彩色滤光片的透射式全彩电润湿显示屏色域[81]

    Figure 22.  Color gamut of transmissive full-color electrowetting display screesn based on color filters[81].

    图 23  相减混色原理

    Figure 23.  Principle of subtractive color mixing.

    图 24  (a) 三层叠加彩色电润湿显示器结构; (b)三层叠加彩色电润湿显示器原理图及(c)混色方法[83]

    Figure 24.  (a) Structures of three-layer superposed color electrowetting display; (b) principles of three-layer superposed color electrowetting display and (c) methods of color mixing[83].

    图 25  基于三层叠加的全彩电润湿显示样机(a)及其色域(b)

    Figure 25.  Prototype of full color electrowetting display devices (a) based on three-layer superposition and its color gamut (b).

    图 26  基于电润湿原理的可变焦距液体微透镜 (a) 施加电压后, 润湿性增加导致θ<θ0; (b)可调焦距液体透镜的电润湿液滴[84]

    Figure 26.  Microlens with tunable focal lengths based on electrowetting: (a)After applying voltage, the increase in wettability causesθ<θ0; (b) an electrowetting-actuated liquid droplet as a tunable-focus liquid lens[84].

    图 27  电润湿显示器件开关过程中导致的电容变化[90]

    Figure 27.  Capcaitance change during the switching of electrowetting display devices[90].

    图 28  介电材料漏电微观物理机制[92]

    Figure 28.  Microscopic physical mechanism of leakage current through dielectric materials[92].

    图 29  电润湿显示器件在热加速老化实验下的失效过程[94]

    Figure 29.  Failure process of electrowetting display devices under thermal accelerated aging experiments[94].

    图 30  多晶介电薄膜老化失效的物理模型及计算流程图[96]

    Figure 30.  Flow diagram and physical modeling of dielectric breakdown for polycrystalline thin films[96].

    图 31  液体介电泳现象 (a) 介电液体朝向更强电场的方向运动[97]; (b) 介电液体中的气泡远离强电场方向运动[97]; (c) 液体的自由界面趋向与电场线平行[97]

    Figure 31.  Liquid DEP phenomenology: (a) Dielectric liquid drawn into a strong electric field[97]; (b) bubble repelled from a strong electric field[97]; (c) controlled liquid profile with surface parallel to the applied electric field[97].

    图 32  液体介电泳实验操控微流体向上运动, 直至介电泳力与重力相平衡. 图中介电性的油性液体在两个平行共面电极之间的缝隙中上升, 并且截面为与电场线相平行的半圆形状[97]

    Figure 32.  Liquid DEP experiments with micro liquid moving upwards until DEP is balanced by gravity. Dielectric oil moves upwards within the slit between two parallel co-planar electrodes, with the cross section of the liquid in a semi-circle shape parallel to electric fields[97].

    图 33  流体内部在自然对流情形下不同瑞利数Ra对应的等温线分布 (a) $ Ra = {10^3} $[99]; (b) $ Ra = {10^4} $[99]; (c) $ Ra = $$ {10^5} $[99]; (d) $ Ra = {10^6} $[99]

    Figure 33.  Isotherms for a fluid under natural convection, with different Rayleigh numbers: (a) $ Ra = {10^3} $[99]; (b) $ Ra = $$ {10^4} $[99]; (c) $ Ra = {10^5} $[99]; (d) $ Ra = {10^6} $[99].

    图 34  流体内部在自然对流情形下不同瑞利数对应的流线分布, 分别对应图33中的四种情况 (a) $ Ra = {10^3} $[99]; (b) $ Ra = {10^4} $[99]; (c) $ Ra = {10^5} $[99]; (d) $ Ra = {10^6} $[99]

    Figure 34.  Streamlines for a fluid under natural convection, for the four cases in Fig. 33: (a) $ Ra = {10^3} $[99]; (b) $ Ra = $$ {10^4} $[99]; (c) $ Ra = {10^5} $[99]; (d) $ Ra = {10^6} $[99].

    图 35  电润湿效应对临界沸腾液体中气泡生长速度的增强实验结果 (a) 未加电情况[20]; (b) 施加交流电润湿情况[20]

    Figure 35.  Effects of electrowetting on bubble ebullition at onset of nucleate boiling: (a) Without electrowetting[20]; (b) with AC electrowetting[20].

    图 36  温度梯度导致的液滴输运在亲疏水情形下表现出相反的运动方向 (a) 液滴中心位置与时间的关系[57]; (b) 亲疏水情况下的流场、温度场的分布[57]

    Figure 36.  Droplet transport driven by temperature gradient, with opposite directions for hydrophilic and hydrophobic surfaces: (a) Droplet centroid position as a function of time[57]; (b) streamlines and isotherms for hydrophilic and hydrophobic cases[57].

    图 37  电润湿显示器件中油墨破裂的瞬态过程[101]

    Figure 37.  Transient behavior of oil rupture in electrowetting display devices[101].

    图 38  电润湿显示像素参数对光电响应曲线影响

    Figure 38.  Effects of pixel parameters in an electrowetting display on electro-optical response curves.

    图 39  电润湿油墨驱动迟滞曲线开口率变化

    Figure 39.  Change of aperture ratio in the driving delay curve of electrowetting oil.

    图 40  电润湿显示油墨驱动电压波形及其对应油墨状态, (a)—(d)分别对应状态①—④

    Figure 40.  Driving voltage waveform design for electrowetting display and the corresponding states of oil rupture. (a)–(d) corresponding to ①–④.

    表 1  流体中离子动力学物理模型概况

    Table 1.  Overview of modeling of ion dynamics in fluids.

    理论重要特征前提假设
    Helmholtz表面电荷被单分子层的反离子中和;
    表面电势在两层离子间线性变化
    离子热运动、离子扩散、离子表面吸附、
    溶剂-固体表面相互作用均忽略
    Gouy-Chapman考虑了离子热运动; 离子被假设为点电荷离子实际尺寸被忽略; 固体表面电荷均匀分布;
    非库仑相互作用被忽略
    Stern考虑了离子的有限尺寸及水合离子作用;
    考虑了离子在固体表面的吸附作用(即Stern层)
    Stern层厚度小于实际尺寸;
    Stern层流速假设为0
    DownLoad: CSV

    表 2  电润湿显示器件常用介电绝缘材料及其性能概况[8789]

    Table 2.  Overview of common dielectric materials and their properties used in electrowetting display devices[8789].

    聚合物绝缘材料
    介电材料 Parylene -C/N Teflon ®AF 1600 Teflon PTFE Cytop TM PDMS 聚氨酯
    介电强度/(kV·mm–1) 268/276 21 60 110 21.2 22
    介电常数 2.65/3.15 1.93 2.1 2.1 2.3—2.8 3.4
    击穿电压/V ±240(DC)
    <1 k(AC 50—20 kHz)
    <300(DC)
    <600 k(AC 1 kHz)
    <120(DC)
    <800(AC 2 kHz)
    ±500(DC) <400 (DC)
    厚度/μm 3.5—30.0 0.01—0.10 25—50 0.1—1.0 38 6—35
    接触角/(°) 126 120 114 110 120 50—80
    加工工艺 气相沉积 旋涂/浸涂 成泡膜材料 旋涂 旋涂 旋涂
      无机绝缘材料
    介电材料 二氧化硅 氮化硅 BST
    介电强度
    /(kV·mm–1)
    400—600 500 18—54
    介电常数 3.9 7.5 225—265
    击穿电压/V VDC≥25 >40 VDC≥15
    厚度/μm 0.1—1.0 0.15 0.07
    接触角/(°) 46.7 30 40.8
    加工工艺 PECVD 气相沉积 MOCVD
    DownLoad: CSV
  • [1]

    Lueder E, Knoll P, Lee S H 2022 Liquid Crystal Displays: Addressing Schemes and ElectroOptical Effects (3rd Ed.) (Hoboken, United States: John Wiley & Sons Ltd.

    [2]

    Chen H W, Lee J H, Lin B Y, Chen S, Wu S T 2018 Light-Sci. Appl. 7 17168

    [3]

    Tsujimura T 2017 OLED Displays Fundamentals and Applications (2nd Ed.) (Hoboken, United States: John Wiley & Sons Ltd.

    [4]

    Shu Y, Lin X, Qin H, Hu Z, Jin Y, Peng X 2020 Angew. Chem. Int. Ed. 59 22312Google Scholar

    [5]

    周国富 2021 电子纸显示技术 (北京: 科学出版社)

    Zhou G 2021 Electronic Paper Display Technology (Beijing: Science Press

    [6]

    Yang B R 2022 E-Paper Displays (Hoboken, United States: John Wiley & Sons Ltd.

    [7]

    Rogers J A 2001 Science 291 1502Google Scholar

    [8]

    Shui L, Hayes R A, Jin M, Zhang X, Bai P, van den Berg A, Zhou G 2014 Lab Chip 14 2374Google Scholar

    [9]

    Bhowmik A K, Li Z, Bos P J 2008 Mobile Displays: Technology and Applications (Hoboken, United States: John Wiley & Sons Ltd.

    [10]

    Heikenfeld J, Drzaic P, Yeo J S, Koch T 2011 J. Soc. Inf. Display 19 129Google Scholar

    [11]

    Beni G, Hackwood S 1981 Appl. Phys. Lett. 38 207Google Scholar

    [12]

    Beni G, Tenan M A 1981 J. Appl. Phys. 52 6011Google Scholar

    [13]

    Lippman G 1875 Annales de Chimie et de Physique 5 494

    [14]

    Berge B 1993 Comptes Rendus De Lacademie Des Sciences Paris Serie II 317 157

    [15]

    Hayes R A, Feenstra B J 2003 Nature 425 383Google Scholar

    [16]

    Chevalliot S, Heikenfeld J, Clapp L, Milarcik A, Vilner S 2011 J. Disp. Technol. 7 649Google Scholar

    [17]

    Mugele F, Baret J C 2005 J. Phys. Condens. Matter 17 R705Google Scholar

    [18]

    Grilli S, Miccio L, Vespini V, Finizio A, De Nicola S, Ferraro P 2008 Opt. Express 16 8084Google Scholar

    [19]

    Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R 2010 Chem. Soc. Rev. 39 1153Google Scholar

    [20]

    Sur A, Lu Y, Pascente C, Ruchhoeft P, Liu D 2018 Int. J. Heat Mass Transfer 120 202Google Scholar

    [21]

    Krupenkin T, Taylor J A 2011 Nat. Commun. 2 448Google Scholar

    [22]

    Lee J, Kim C J 2000 J. Microelectromech. Syst. 9 171Google Scholar

    [23]

    Walker S, Shapiro B 2006 J. Microelectromech. Syst. 15 986Google Scholar

    [24]

    Jones T 2005 J. Micromech. Microeng. 15 1184Google Scholar

    [25]

    Digilov R 2000 Langmuir 16 6719Google Scholar

    [26]

    Oh J M, Ko S H, Kang K H 2010 Phys. Fluids 22 032002Google Scholar

    [27]

    Zeng J, Korsmeyer T 2004 Lab Chip 4 265Google Scholar

    [28]

    Jones T B 2002 Langmuir 18 4437Google Scholar

    [29]

    Kang K H 2002 Langmuir 18 10318Google Scholar

    [30]

    Papathanasiou A G, Boudouvis A G 2005 Appl. Phys. Lett. 86 164102Google Scholar

    [31]

    Mugele F 2009 Soft Matter 5 3377Google Scholar

    [32]

    Bienia M, Mugele F, Quilliet C, Ballet P 2004 Physica A 339 72Google Scholar

    [33]

    Verheijen H J J, Prins M W J 1999 Langmuir 15 6616Google Scholar

    [34]

    Shapiro B, Moon H, Garrell R L, Kim C J 2003 J. Appl. Phys. 93 5794Google Scholar

    [35]

    Song F, Ma B, Fan J, Chen Q, Li B Q 2019 Langmuir 35 9753Google Scholar

    [36]

    Liu J, Wang M, Chen S, Robbins M O 2012 Phys. Rev. Lett. 108 216101Google Scholar

    [37]

    Daub C D, Bratko D, Luzar A 2011 J. Phys. Chem. C 115 22393Google Scholar

    [38]

    Łukaszewicz G, Kalita P 2016 Navier-Stokes Equations An Introduction with Applications (Cham, Switzerland: Springer

    [39]

    Mohamad A A 2011 Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes (Heidelberg, Germany: Springer-Verlag

    [40]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用(北京: 科学出版社)

    He Y, Wang Y, Li Q 2009 Lattice Boltzmann Method Theory and Applications (Beijing: Science Press

    [41]

    Guo Z, Shu C 2013 Lattice Boltzmann Method and its Applications in Engineering (Singapore: World Scientific

    [42]

    Bray A J 1994 Adv. Phys. 43 357Google Scholar

    [43]

    Cahn J W, Hillard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [44]

    Landau L D, Litshitz E M 1980 Statistical Physics Part 1 Course of Theoretical Physics (Oxford, United Kingdom: Butterworth-Heinemann

    [45]

    Briant A J, Wagner A J, Yeomans J M 2004 Phys. Rev. E 69 031602

    [46]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041Google Scholar

    [47]

    Fornberg B 1988 Math. Comput. 51 699Google Scholar

    [48]

    李庆扬 2008 数值分析(第5版)(北京: 清华大学出版社)

    Li Q 2008 Numerical Analysis (5th Ed.) (Beijing: Tsinghua University Press

    [49]

    Liu H, Kang Q, Leonardi C R, Schmieschek S, Narváez A, Jones B D, Williams J R, Valocchi A J, Harting J 2016 Comput. Geosci. 20 777Google Scholar

    [50]

    Sharma K V, Straka R, Tavares F W 2019 Ind. Eng. Chem. Res. 58 16205Google Scholar

    [51]

    Satofuka N, Nishioka T 1999 Comput. Mech. 23 164Google Scholar

    [52]

    Wichmann K R K 2019 Ph. D. Dissertation (Munich, Germany: Technische Universität München

    [53]

    Chen S, Doolen G D 1988 Annu. Rev. Fluid Mech. 30 329

    [54]

    Qian Y H, D’Humières D, Lallemand P 1992 EPL 17 479Google Scholar

    [55]

    Ruiz-Gutierrez E, Ledesma-Aguilar R 2019 Langmuir 35 4849Google Scholar

    [56]

    Ren X, Wei S, Qu X, Liu F 2019 AIP Adv. 9 055021Google Scholar

    [57]

    Liu H, Zhang Y 2015 J. Comput. Phys. 280 37Google Scholar

    [58]

    Liu H H, Valocchi A J, Kang Q J 2012 Phys. Rev. E 85 046309Google Scholar

    [59]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045Google Scholar

    [60]

    Connington K, Lee T 2013 J. Comput. Phys. 250 601Google Scholar

    [61]

    Fogolari F, Brigo A, Molinari H 2002 J. Mol. Recognit. 15 379

    [62]

    Butt H, Graf L, Kappl M 2006 Physics and Chemistry of Interfaces (2nd Ed.) (Weinheim, Germany: Wiley-VCH

    [63]

    Good R J 1992 J. Adhes. Sci. Technol. 6 1269Google Scholar

    [64]

    Shi Z, Zhang Y, Liu M, Hanaor D A H, Gan Y 2018 Colloids Surf. , A 555 365Google Scholar

    [65]

    Johnson R E 1993 Wettability (New York, United States: Marcel Dekker Inc.

    [66]

    De Gennes P G 1994 Soft Interfaces (Cambridge, United Kingdom: Cambridge University Press

    [67]

    Marmur A 2003 Langmuir 19 8343Google Scholar

    [68]

    Chen X, Ma R, Li J, Hao C, Guo W, Luk B L, Li S C, Yao S, Wang Z 2012 Phys. Rev. Lett. 109 116101Google Scholar

    [69]

    Marmur A 1992 Modern Approach to Wettability: Theory and Applications (New York, United States: Plenum Press

    [70]

    刘志浩 2022 硕士学位论文(广州: 华南师范大学)

    Liu Z 2022 M. S. Thesis (Guangzhou: South China Normal University

    [71]

    Zhou R, Ye Q, Li H, Jiang H, Tang B, Zhou G 2019 Results Phys. 12 1991Google Scholar

    [72]

    Bard A, Faulkner L 2001 Electrochemical Methods Fundamentals and Applications (2nd Ed.) (Hoboken, United States: John Wiley & Sons Inc.

    [73]

    邓勇, 唐彪, 郭媛媛, 蒋洪伟, 周蕤, Hayes R A, 周国富 2016 华南师范大学学报(自然科学版) 48 31

    Deng Y, Tang B, Guo Y, Jiang H, Zhou R, Hayes R A, Zhou G 2016 Journal of South China Normal University: Natural Sciences 48 31

    [74]

    Deng Y, Li S, Ye D, Jiang H, Tang B, Zhou G 2020 Micromachines 11 81Google Scholar

    [75]

    Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P 2015 J. Am. Chem. Soc. 137 3799Google Scholar

    [76]

    Li S, Ye D, Henzen A, Deng Y, Zhou G 2020 New J. Chem. 44 415Google Scholar

    [77]

    Lee P T C, Chiu C W, Lee T M, Chang T Y, Wu M T, Cheng W Y, Kuo S W, Lin J J 2013 ACS Appl. Mater. Interfaces 5 5914Google Scholar

    [78]

    Lee P T C, Chiu C W, Chang L Y, Chou P Y, Lee T M, Chang T Y, Wu M T, Cheng W Y, Kuo S W, Lin J J 2014 ACS Appl. Mater. Interfaces 6 14345Google Scholar

    [79]

    Blankenbach K, Yan Q, O’Brien R J 2020 Handbook of Visual Display Technology (Cham, Switzerland: Springer

    [80]

    Kuo S W, Chang Y P, Cheng W Y, Lo K L, Lee D W, Lee H H, Chen K T, Tsai Y H, Chen Y C, Chiu Y H, Chiu W W, Fuh S Y, Sun R L, Su P J, Wang C W, Lee K C, Shiu J W 2009 SID Int. Symp. Dig. Tech. Pap. 40 483Google Scholar

    [81]

    Giraldo A, Aubert J, Bergeron N, Derckx E, Feenstra B J, Massard R, Mans J, Slack A, Vermeulen P 2010 J. Soc. Inf. Display 18 317Google Scholar

    [82]

    You H, Steckl A J 2010 Appl. Phys. Lett. 97 023514Google Scholar

    [83]

    郭媛媛, 蒋洪伟, 袁冬, 唐彪, 周国富 2022 液晶与显示 37 925Google Scholar

    Guo Y, Jiang H, Yuan D, Tang B, Zhou G 2022 Chin. J. Liq. Cryst. Disp. 37 925Google Scholar

    [84]

    Ivanova N 2020 Philos. Trans. R. Soc. London, Ser. A 378 20190442

    [85]

    Song X, Zhang H, Li D, Jia D, Liu T 2020 Sci. Rep. 10 16318Google Scholar

    [86]

    Supekar O D, Zohrabi M, Gopinath J T, Bright V M 2017 Langmuir 33 4863Google Scholar

    [87]

    Lee J K, Park K W, Kim H R, Kong S H 2011 Sens. Actuators, B 160 1593Google Scholar

    [88]

    Hapsari A, Won Y H 2014 Aunual Conference on Oxide-based Materials and Devices V at SPIE Photonics West, San Francisco, CA, February 2–5, 2014 p89871S

    [89]

    Xia Y, Chen J, Zhu Z, Zhang Q, Yang H, Wang Q 2018 RSC Adv. 8 4032Google Scholar

    [90]

    Rosa P 2015 Ph. D. Dissertation (Lisbon, Portugal: New University of Lisbon

    [91]

    Vandelli L, Padovani A, Larcher L, Southwick R G, Knowlton W B, Bersuker G 2011 IEEE Trans. Electron Devices 58 2878Google Scholar

    [92]

    Jegert G, Kersch A, Weinreich W, Schörder U, Lugli P 2010 Appl. Phys. Lett. 96 062113Google Scholar

    [93]

    Liu F, Liu Y Y, Li L, Zhou G, Jiang X, Luo J W 2020 Phys. Rev. Appl. 13 024020Google Scholar

    [94]

    Zhou R, Fu S, Jiang H, Li X, Zhou G 2019 Results Phys. 15 102737Google Scholar

    [95]

    Padovani A, Gao D Z, Shluger A L, Larcher L 2017 J. Appl. Phys. 121 155101Google Scholar

    [96]

    Zhang Q, Yu L, Bian Z, Yuan D, Sun H, Tang B, Lu X, Liu F, Zhou G 2023 Phys. Rev. Appl. 19 024008Google Scholar

    [97]

    Jones T B 2001 J. Electrostat. 51 290

    [98]

    R-Gutiérrez É, Edwards A M J, McHale G, Newton M I, Wells G G, Brown C V, L-Aguilar R 2021 Langmuir 37 7328Google Scholar

    [99]

    Dixit H N, Babu V 2006 Int. J. Heat Mass Transfer 49 727Google Scholar

    [100]

    Ko S H, Lee S J, Kang K H, 2009 Appl. Phys. Lett. 94 194102Google Scholar

    [101]

    Tang B, Groenewold J, Zhou M, Hayes R A, Zhou G 2016 Sci. Rep. 6 26593Google Scholar

    [102]

    Tonks L 1936 Phys. Rev. 48 562

    [103]

    Schaeffer E, Thurn-Albrecht T, Russell T P, Steiner U 2000 Nature 403 874Google Scholar

    [104]

    González H, Surgy G N D, Chabrerie J P 1994 Phys. Rev. B 50 2520Google Scholar

    [105]

    Yi Z, Shui L, Wang L, Jin M, Hayes R A, Zhou G 2015 Displays 37 86Google Scholar

    [106]

    Luo Z J, Zhang W N, Liu L W, Xie S, Zhou G 2016 J. Soc. Inf. Disp. 24 345Google Scholar

  • [1] Chen Chong, Ma Ming-Yuan, Pan Feng, Song Cheng. Magneto-acoustic coupling: Physics, materials, and devices. Acta Physica Sinica, 2024, 73(5): 058502. doi: 10.7498/aps.73.20231908
    [2] Deng Wen-Juan, Zhu Bin, Wang Zhuang-Fei, Peng Xin-Cun, Zou Ji-Jun. Resolution characteristics of varying doping and varying composition AlxGa1–xAs/GaAs reflective photocathodes. Acta Physica Sinica, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [3] Liu Xiao-Juan, Li Zhan-Qi, Jin Zhi-Gang, Huang Zhi, Wei Jia-Zheng, Zhao Cun-Lu, Wang Zhan-Tao. Energy conversion during electrically actuated jumping of droplets. Acta Physica Sinica, 2022, 71(11): 114702. doi: 10.7498/aps.71.20212133
    [4] Xie Shi-Meng, Huang Lin, Wang Xue, Chi Zi-Hui, Tang Yong-Hui, Zheng Zhu, Jiang Hua-Bei. Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array. Acta Physica Sinica, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
    [5] Ye Han-Sheng, Gu Yu-Qiu, Huang Wen-Hui, Wu Yu-Chi, Tan Fang, Zhang Xiao-Hui, Wang Shao-Yi. Parameter optimization of self-reflecting all-laser-driven Thomson scattering based on laser wakefield acceleration. Acta Physica Sinica, 2021, 70(8): 085204. doi: 10.7498/aps.70.20210549
    [6] Xie Na, Zhang Ning, Zhao Rui, Chen Tao, Hao Li-Li, Xu Rong-Qing. Test and analysis of the dynamic procedure for electrowetting-based liquid lens under alternating current voltage. Acta Physica Sinica, 2016, 65(22): 224202. doi: 10.7498/aps.65.224202
    [7] Guo Shu-Yan, Ye Peng, Teng Hao, Zhang We, Li De-Hua, Wang Zhao-Hua, Wei Zhi-Yi. A reflective grism pair stretcher for chirped pulse amplification. Acta Physica Sinica, 2013, 62(9): 094202. doi: 10.7498/aps.62.094202
    [8] Chen Xin-Long, Zhao Jing, Chang Ben-Kang, Xu Yuan, Zhang Yi-Jun, Jin Mu-Chun, Hao Guang-Hui. Comparison between exponential-doping reflection-mode GaAlAs and GaAs photocathodes. Acta Physica Sinica, 2013, 62(3): 037303. doi: 10.7498/aps.62.037303
    [9] Tao Ning, Zeng Zhi, Feng Li-Chun, Zhang Cun-Lin. The method of quantitative characterization using reflection pulsed thermography. Acta Physica Sinica, 2012, 61(17): 174212. doi: 10.7498/aps.61.174212
    [10] Yang Yong-Fu, Fu Rong-Guo, Ma Li, Wang Xiao-Hui, Zhang Yi-Jun. Effect of surface potential barrier on quantum efficiency decay of reflection-mode GaN photocathode. Acta Physica Sinica, 2012, 61(12): 128504. doi: 10.7498/aps.61.128504
    [11] Weng Yong-Chao, Kuang Long-Yu, Gao Nan, Cao Lei-Feng, Zhu Xiao-Li, Wang Xiao-Hua, Xie Chang-Qing. Reflection type single-order diffraction grating. Acta Physica Sinica, 2012, 61(15): 154203. doi: 10.7498/aps.61.154203
    [12] Guo Xiang-Yang, Chang Ben-Kang, Wang Xiao-Hui, Zhang Yi-Jun, Yang Ming. Photoemission stability of negative electronaffinity GaN phtocathode. Acta Physica Sinica, 2011, 60(5): 058101. doi: 10.7498/aps.60.058101
    [13] Guo Xiang-Yang, Du Xiao-Qing, Chang Ben-Kang, Qiao Jian-Liang, Qian Yun-Sheng, Wang Xiao-Hui. Quantum efficiency recovery of reflection-mode NEA GaN photocathode. Acta Physica Sinica, 2011, 60(1): 017903. doi: 10.7498/aps.60.017903
    [14] Qiao Jian-Liang, Chang Ben-Kang, Du Xiao-Qing, Niu Jun, Zou Ji-Jun. Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode. Acta Physica Sinica, 2010, 59(4): 2855-2859. doi: 10.7498/aps.59.2855
    [15] Chen Tao, Liang Zhong-Cheng, Qian Chen, Xu Ning. Properties of novel variable optical attenuator based on electrowetting microprisms. Acta Physica Sinica, 2010, 59(11): 7906-7910. doi: 10.7498/aps.59.7906
    [16] Niu Jun, Yang Zhi, Chang Ben-Kang, Qiao Jian-Liang, Zhang Yi-Jun. Study on the model of quantum efficiency of reflective varied doping GaAs photocathode. Acta Physica Sinica, 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [17] Liu Wen-Jun, Bai Bing, Zhou Chang-He, Qu Shi-Liang, Dai En-Wen, Li Guo-Wei. Generating femtosecond double pulses using Dammann reflection gratings. Acta Physica Sinica, 2007, 56(6): 3292-3299. doi: 10.7498/aps.56.3292
    [18] Xi Zai-Jun, Xiao Ti-Qiao, Zhang Zeng-Yan, Chen Min, Yu Xiao-Han, Xu Hong-Jie. Investigation on reflection tomography imaging with terahertz wave of nonparallel interfaces inside the sample. Acta Physica Sinica, 2006, 55(5): 2293-2299. doi: 10.7498/aps.55.2293
    [19] Han Ying-Kui, Wang Qing-Yue, Zhang Zhi-Gang, Zhang Wei-Li, Chai Lu, Yuan Xiao-Dong, Huang Xiao-Jun. Effect of a folded reflecting telescope on the pulse front in the femtosecond ch irped pulse amplification system. Acta Physica Sinica, 2005, 54(4): 1613-1618. doi: 10.7498/aps.54.1613
    [20] CHEN KE-MING, ZHOU TIE-CHENG, FAN YONG-LIANG, SHENG CHI, YU MING-REN. THE EFFECT OF ELECTRON DIFFRACTION CONDITIONS ON RHEED INTENSITY OSCILLATIONS DURING Si(111) MBE. Acta Physica Sinica, 1990, 39(12): 1937-1944. doi: 10.7498/aps.39.1937
Metrics
  • Abstract views:  2805
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  24 May 2023
  • Accepted Date:  06 July 2023
  • Available Online:  02 August 2023
  • Published Online:  20 October 2023

/

返回文章
返回