Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Josephson current induced by spin-mixing Cooper pairs

Meng Hao Wu Xiu-Qiang

Citation:

Josephson current induced by spin-mixing Cooper pairs

Meng Hao, Wu Xiu-Qiang
PDF
HTML
Get Citation
  • Based on the Bogoliubov-de Gennes equations, we investigate the transport of the Josephson current in a one-dimensional S/FL-F-FR/S junction, where S and F are superconductor and ferromagnet, and FL,R are the left and right interfaces with noncollinear magnetizations. It is found that the FL and FR interfaces can induce spin-mixing and spin-flip effects, which can transform a part of spin-singlet pairs in the S into equal-spin triplet pairs in the F. For the short S/FL-F-FR/S junction, the spin-singlet pairs and the equal-spin triplet pairs can survive in the F layer. Therefore, with the increase of the ferromagnetic exchange field and the angle difference of interface magnetization rotation, the critical current oscillates on a base level. If the F is transformed into half-metal, only the equal-spin triple pairs exist in the F layer, and the oscillation characteristic of critical current disappears. In addition, the FL and FR interfaces can work as conventional potential barriers. As a result, the critical current exhibits double oscillation behaviors with the increase of ferromagnetic thickness, in which the long-wave oscillation arises from the phase change of the spin-singlet pairs in the ferromagnetic layer, and the short-wave oscillation is caused by the resonant tunneling effect when the spin-singlet pairs and the equal-spin triplet pairs pass through two interfacial barriers.
      Corresponding author: Meng Hao, menghao2021@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174238), the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2020JM-597, 2023-JC-YB-025), the Scientific Research Foundation of Shaanxi University of Technology, China (Grant No. SLGKY2006), the Innovation Team of Shaanxi Universities, China (Grant No. 2022-94), and the School-level Youth Innovation Team of Shaanxi University of Technology, China.
    [1]

    Golubov A A, Kupriyanov M Y, Il’ichev E 2004 Rev. Mod. Phys. 76 411Google Scholar

    [2]

    Buzdin A I 2005 Rev. Mod. Phys. 77 935Google Scholar

    [3]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321Google Scholar

    [4]

    Eschrig M 2011 Phys. Today 64 43Google Scholar

    [5]

    Blamire M G, Robinson J W A 2014 J. Phys. Condens. Matter 26 453201Google Scholar

    [6]

    Linder J, Robinson J W A 2015 Nat. Phys. 11 307Google Scholar

    [7]

    Eschrig M 2015 Rep. Prog. Phys. 78 104501Google Scholar

    [8]

    Mel'nikov A S, Mironov S V, Samokhvalov A V, Buzdin A I 2022 Physics-Uspekhi 65 1248Google Scholar

    [9]

    Kimura T, Otani Y, Hamrle J 2006 Phys. Rev. Lett. 96 037201Google Scholar

    [10]

    Keizer R S, Goennenwein S T B, Klapwijk T M, Miao G, Xiao G, Gupta A 2006 Nature 439 825Google Scholar

    [11]

    Anwar M S, Czeschka F, Hesselberth M, Porcu M, Aarts J 2010 Phys. Rev. B 82 100501(RGoogle Scholar

    [12]

    Kontos T, Aprili M, Lesueur J, Genêt F, Stephanidis B, Boursier R 2002 Phys. Rev. Lett. 89 137007Google Scholar

    [13]

    Jiang J S, Davidović D, Reich D H, Chien C L 1995 Phys. Rev. Lett. 74 314Google Scholar

    [14]

    Blum Y, Tsukernik A, Karpovski M, Palevski A 2002 Phys. Rev. Lett. 89 187004Google Scholar

    [15]

    Ryazanov V V, Oboznov V A, Rusanov A Yu, Veretennikov A V, Golubov A A, Aarts J 2001 Phys. Rev. Lett. 86 2427Google Scholar

    [16]

    Oboznov V A, Bol’ginov V V, Feofanov A K, Ryazanov V V, Buzdin A I 2006 Phys. Rev. Lett. 96 197003Google Scholar

    [17]

    Yamashita T, Takahashi S, Maekawa S 2006 Appl. Phys. Lett. 88 132501Google Scholar

    [18]

    Bergeret F S, Volkov A F, Efetov K B 2001 Phys. Rev. Lett. 86 4096Google Scholar

    [19]

    Kadigrobov A, Shekhter R I, Jonson M 2001 Europhys. Lett. 54 394Google Scholar

    [20]

    Eschrig M, Kopu J, Cuevas J C, Gerd Schön 2003 Phys. Rev. Lett. 90 137003Google Scholar

    [21]

    Houzet M, Buzdin A I 2007 Phys. Rev. B 76 060504(RGoogle Scholar

    [22]

    Asano Y, Tanaka Y, Golubov A A 2007 Phys. Rev. Lett. 98 107002Google Scholar

    [23]

    Sosnin I, Cho H, Petrashov V T, Volkov A F 2006 Phys. Rev. Lett. 96 157002Google Scholar

    [24]

    Robinson J W A, Witt J D S, Blamire M G 2010 Science 329 59Google Scholar

    [25]

    Khaire T S, Khasawneh M A, Pratt W P, Birge N O 2010 Phys. Rev. Lett. 104 137002Google Scholar

    [26]

    Klose C, Khaire T S, Wang Y X, et al. 2012 Phys. Rev. Lett. 108 127002Google Scholar

    [27]

    Martinez W M, Pratt W P, Birge N O 2016 Phys. Rev. Lett. 116 077001Google Scholar

    [28]

    Sanchez-Manzano D, Mesoraca S, Cuellar F A, et al. 2022 Nat. Mater. 21 188Google Scholar

    [29]

    De Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin) pp137–170

    [30]

    Bagwell P F 1992 Phys. Rev. B 46 12573Google Scholar

    [31]

    Beenakker C W J 1991 Phys. Rev. Lett. 67 3836Google Scholar

    [32]

    Bardeen J, Kümmel R, Jacobs A E, Tewordt L 1969 Phys. Rev. 187 556Google Scholar

    [33]

    Cayssol J, Montambaux G 2004 Phys. Rev. B 70 224520Google Scholar

    [34]

    Bulaevskii L N, Buzdin A I, Kulić M L, Panyukov S V 1985 Adv. Phys. 34 175Google Scholar

    [35]

    Meng H, Wu X Q, Ren Y J, Wu J S 2022 Phys. Rev. B 106 174502Google Scholar

    [36]

    Markos P, Soukoulis C M 2008 Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton: Princeton University Press) pp56–73

    [37]

    Cohen-Tannoudji C, Diu B, Laloë F 2019 Quantum Mechanics (Vol. 1) (Weinheim: Wiley-VCH) pp2–32

    [38]

    Iogansen L V 1964 Sov. Phys.-JETP 18 146

    [39]

    Meng H, Wu X Q, Zheng Z M 2013 Europhys. Lett. 104 37003Google Scholar

    [40]

    Meng H, Wu J S, Wu X Q, Ren M Y, Ren Y J 2016 Sci. Rep. 6 21308Google Scholar

  • 图 1  (a) S/FL-F-FR/S结的结构示意图, 其中F内的粗箭头表示交换场方向, FL和FR为具有非共线磁矩的自旋活性界面; (b) Fj界面处磁矩$ {{\boldsymbol{\rho}}}_{j} $的磁化方向, 其中$ {j}=\rm{L} $, $ \rm{R} $分别对应左侧和右侧界面. $ \theta_{j} $$ \chi_{j} $分别表示Fj界面的极化角和方位角

    Figure 1.  (a) Schematic diagram of the S/FL-F-FR/S junction, where thick arrow in F indicates the directions of the exchange field, and the FL and FR are spin-active interfaces with non-collinear magnetic moments; (b) the direction of magnetization $ {{\boldsymbol{\rho}}}_{j} $ at the Fj interface, where $ {j}=\rm{L} $ and $ \rm{R} $ correspond to the left and right interfaces, respectively. $ \theta_{j} $ and $ \chi_{j} $ denote polar and azimuthal angles of the Fj interface, respectively

    图 2  S/F/S结中Josephson电流随铁磁特征的变化 (a)临界电流$ I_{{\rm{c}}} $随铁磁交换场$ h_{z} $和铁磁厚度d的变化特征; (b)不同交换场下$ I_{{\rm{c}}} $d的变化特征; (c)不同铁磁厚度时$ I_{{\rm{c}}} $$ h_{z} $的变化特征; $ h_{z}/E_{{\rm{F}}} = 0.15 $时的(d)Andreev能谱$ E_{\rm{A}}(\phi) $和(e)电流-位相关系$ I(\phi) $. 在所有图形中, 界面极化强度取$ P_{{\rm{L}}}=P_{{\rm{R}}} = 0 $

    Figure 2.  Variation of Josephson current with ferromagnetic characteristics in the S/F/S junction: (a) Critical current $ I_{{\rm{c}}} $ versus exchange field $ h_z $ and ferromagnetic thickness d; (b) dependence of $ I_{{\rm{c}}} $ on d for different exchange fields; (c) dependence of $ I_{{\rm{c}}} $ on $ h_z $ for different ferromagnetic thicknesses; (d) Andreev energy spectrum $ E_{\rm{A}}(\phi) $ and (e) current-phase relation $ I(\phi) $ for $ h_{z}/E_{{\rm{F}}} = $$ 0.15 $. In all panels, the strengths of interfacial polarization are taken as $ P_{{\rm{L}}}=P_{{\rm{R}}} = 0 $

    图 3  临界电流$ I_{\rm{c}} $随铁磁交换场$ h_z $和界面磁矩偏转角度差$ {\text{δ}}\chi $的变化特征 (a) kFd = 25; (b) kFd = 50; (c) kFd = 70. 在所有图形中, 界面极化强度取$ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $

    Figure 3.  The critical current $ I_{{\rm{c}}} $ versus exchange field $ h_z $ and angle difference of interface magnetization rotation $ {\text{δ}}\chi $: (a) kFd = 25; (b) kFd = 50; (c) kFd = 70. In all panels, the strengths of interfacial polarization are taken as $ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $

    图 4  临界电流$ I_{\rm{c}} $随铁磁层厚度d和界面磁矩偏转角度差$ {\text{δ}}\chi $的变化特征 (a), (c), (e) 电流变化的侧视图; (b), (d), (f) 电流变化的俯视图. (a), (b) $ h_z/E_{{\rm{F}}} = 0.1 $; (c), (d) $ h_z/E_{{\rm{F}}} = 0.5 $; (e), (f) $ h_z/E_{\rm{F}} = 1.01 $. 在所有图形中, 界面极化强度取$ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $

    Figure 4.  Variation of the critical current with ferromagnetic thickness d and angle difference of interface magnetization rotation $ {\text{δ}}\chi $: (a), (c), (e) Side view of current changes; (b), (d), (f) top view of current changes. (a), (b) $ h_z/E_{{\rm{F}}} = 0.1 $; (c), (d) $ h_z/E_{{\rm{F}}} = 0.5 $; (e), (f) $ h_z/E_{\rm{F}} = 1.01 $. In all panels, the strengths of interfacial polarization are taken as $ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $.

    图 5  (a)$ {\text{δ}}\chi $取3个特殊值时临界电流$ I_{\rm{c}} $随铁磁层厚度d的变化特征; (b), (c) $ {\text{δ}}\chi = 0 $时的Andreev能谱$ E_{\rm{A}}(\phi)$和电流-位相关系$ I(\phi) $ (图(b)插图描述了$ I_{\rm{c }}$$ {\text{δ}}\chi $的变化); (d), (e) $ k_{{\rm{F}}}d = 29.9 $时的Andreev能谱$ E_{\rm{A}}(\phi) $和电流-位相关系$ I(\phi) $. 在所有图形中, 其他参数为$ h_{z}/E_{{\rm{F}}} = 0.1 $$ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $

    Figure 5.  (a) Variation of the critical current with ferromagnetic thickness d when $ {\text{δ}}\chi $ takes three special values; (b), (c) Andreev energy spectrum $ E_{\rm{A}}(\phi) $ and current-phase relation $ I(\phi) $ for $ {\text{δ}}\chi = 0 $ (the inset in panel (b) illustrates the dependence of $ I_{\rm{c}} $ on $ {\text{δ}}\chi $); (d), (e) Andreev energy spectrum $ E_{\rm{A}}(\phi) $ and current-phase relation $ I(\phi) $ for $ k_{{\rm{F}}}d = 29.9 $. In all panels, other parameters are $ h_{z}/E_{{\rm{F}}} = 0.1 $ and $ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $.

    图 6  $ {\text{δ}}\chi = 0 $时不同铁磁交换场下临界电流$ I_{\rm{c}} $随界面极化强度$ P_{{\rm{L}}} $$ P_{{\rm{R}}} $的变化特征 (a) $ h_z/E_{{\rm{F}}} $ = 0.1; (b) $ h_z/E_{{\rm{F}}} $ = 0.5; (c) $ h_z/E_{{\rm{F}}} $ = 1.01. 所有图形中, F层厚度取$ k_{{\rm{F}}}d = 50 $

    Figure 6.  Variation of the critical current with the strengths of interfacial polarization $ P_{{\rm{L}}} $ and $ P_{{\rm{R}}} $ for three different exchange fields in the case of $ {\text{δ}}\chi = 0 $: (a) $ h_z/E_{{\rm{F}}} $ = 0.1; (b) $ h_z/E_{{\rm{F}}} $ = 0.5; (c) $ h_z/E_{{\mathrm{F}}} $ = 1.01. In all panels, the thickness of the F layer is taken as $ k_{{\rm{F}}}d = 50 $

  • [1]

    Golubov A A, Kupriyanov M Y, Il’ichev E 2004 Rev. Mod. Phys. 76 411Google Scholar

    [2]

    Buzdin A I 2005 Rev. Mod. Phys. 77 935Google Scholar

    [3]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321Google Scholar

    [4]

    Eschrig M 2011 Phys. Today 64 43Google Scholar

    [5]

    Blamire M G, Robinson J W A 2014 J. Phys. Condens. Matter 26 453201Google Scholar

    [6]

    Linder J, Robinson J W A 2015 Nat. Phys. 11 307Google Scholar

    [7]

    Eschrig M 2015 Rep. Prog. Phys. 78 104501Google Scholar

    [8]

    Mel'nikov A S, Mironov S V, Samokhvalov A V, Buzdin A I 2022 Physics-Uspekhi 65 1248Google Scholar

    [9]

    Kimura T, Otani Y, Hamrle J 2006 Phys. Rev. Lett. 96 037201Google Scholar

    [10]

    Keizer R S, Goennenwein S T B, Klapwijk T M, Miao G, Xiao G, Gupta A 2006 Nature 439 825Google Scholar

    [11]

    Anwar M S, Czeschka F, Hesselberth M, Porcu M, Aarts J 2010 Phys. Rev. B 82 100501(RGoogle Scholar

    [12]

    Kontos T, Aprili M, Lesueur J, Genêt F, Stephanidis B, Boursier R 2002 Phys. Rev. Lett. 89 137007Google Scholar

    [13]

    Jiang J S, Davidović D, Reich D H, Chien C L 1995 Phys. Rev. Lett. 74 314Google Scholar

    [14]

    Blum Y, Tsukernik A, Karpovski M, Palevski A 2002 Phys. Rev. Lett. 89 187004Google Scholar

    [15]

    Ryazanov V V, Oboznov V A, Rusanov A Yu, Veretennikov A V, Golubov A A, Aarts J 2001 Phys. Rev. Lett. 86 2427Google Scholar

    [16]

    Oboznov V A, Bol’ginov V V, Feofanov A K, Ryazanov V V, Buzdin A I 2006 Phys. Rev. Lett. 96 197003Google Scholar

    [17]

    Yamashita T, Takahashi S, Maekawa S 2006 Appl. Phys. Lett. 88 132501Google Scholar

    [18]

    Bergeret F S, Volkov A F, Efetov K B 2001 Phys. Rev. Lett. 86 4096Google Scholar

    [19]

    Kadigrobov A, Shekhter R I, Jonson M 2001 Europhys. Lett. 54 394Google Scholar

    [20]

    Eschrig M, Kopu J, Cuevas J C, Gerd Schön 2003 Phys. Rev. Lett. 90 137003Google Scholar

    [21]

    Houzet M, Buzdin A I 2007 Phys. Rev. B 76 060504(RGoogle Scholar

    [22]

    Asano Y, Tanaka Y, Golubov A A 2007 Phys. Rev. Lett. 98 107002Google Scholar

    [23]

    Sosnin I, Cho H, Petrashov V T, Volkov A F 2006 Phys. Rev. Lett. 96 157002Google Scholar

    [24]

    Robinson J W A, Witt J D S, Blamire M G 2010 Science 329 59Google Scholar

    [25]

    Khaire T S, Khasawneh M A, Pratt W P, Birge N O 2010 Phys. Rev. Lett. 104 137002Google Scholar

    [26]

    Klose C, Khaire T S, Wang Y X, et al. 2012 Phys. Rev. Lett. 108 127002Google Scholar

    [27]

    Martinez W M, Pratt W P, Birge N O 2016 Phys. Rev. Lett. 116 077001Google Scholar

    [28]

    Sanchez-Manzano D, Mesoraca S, Cuellar F A, et al. 2022 Nat. Mater. 21 188Google Scholar

    [29]

    De Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin) pp137–170

    [30]

    Bagwell P F 1992 Phys. Rev. B 46 12573Google Scholar

    [31]

    Beenakker C W J 1991 Phys. Rev. Lett. 67 3836Google Scholar

    [32]

    Bardeen J, Kümmel R, Jacobs A E, Tewordt L 1969 Phys. Rev. 187 556Google Scholar

    [33]

    Cayssol J, Montambaux G 2004 Phys. Rev. B 70 224520Google Scholar

    [34]

    Bulaevskii L N, Buzdin A I, Kulić M L, Panyukov S V 1985 Adv. Phys. 34 175Google Scholar

    [35]

    Meng H, Wu X Q, Ren Y J, Wu J S 2022 Phys. Rev. B 106 174502Google Scholar

    [36]

    Markos P, Soukoulis C M 2008 Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton: Princeton University Press) pp56–73

    [37]

    Cohen-Tannoudji C, Diu B, Laloë F 2019 Quantum Mechanics (Vol. 1) (Weinheim: Wiley-VCH) pp2–32

    [38]

    Iogansen L V 1964 Sov. Phys.-JETP 18 146

    [39]

    Meng H, Wu X Q, Zheng Z M 2013 Europhys. Lett. 104 37003Google Scholar

    [40]

    Meng H, Wu J S, Wu X Q, Ren M Y, Ren Y J 2016 Sci. Rep. 6 21308Google Scholar

  • [1] Chen Ya-Bo, Yang Xiao-Kuo, Wei Bo, Wu Tong, Liu Jia-Hao, Zhang Ming-Liang, Cui Huan-Qing, Dong Dan-Na, Cai Li. Ferromagnetic resonance frequency and spin wave mode of asymmetric strip nanomagnet. Acta Physica Sinica, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [2] Zeng Shao-Long, Li Ling, Xie Zheng-Wei. Tunneling times in double spin-filter junctions. Acta Physica Sinica, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [3] Li Ming, Chen Jun, Gong Jian. Dwell time and escape tunneling in InAs/InP cylindrical quantum wire. Acta Physica Sinica, 2014, 63(23): 237303. doi: 10.7498/aps.63.237303
    [4] Jin Xia, Dong Zheng-Chao, Liang Zhi-Peng, Zhong Chong-Gui. Josephson effect in ferromagnetic d-wave superconductor/ferromagnet/ferromagnetic d-wave superconductor junctions. Acta Physica Sinica, 2013, 62(4): 047401. doi: 10.7498/aps.62.047401
    [5] He Rui. Quantum communication based on the circuit coupled by SQUID and mesoscopic LC resonator. Acta Physica Sinica, 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [6] Song Ge, Xu Jing-Ping, Yang Ya-Ping. Electromagnetic modes in a three-layered structure made of single-negative materials. Acta Physica Sinica, 2011, 60(7): 074101. doi: 10.7498/aps.60.074101
    [7] Chen Jing, Jiang Zhen-Zong, Lu Jia-Jia, Liu Yong-Sheng, Zhu Yan-Yan. Eeffects of split-level energy on optoelectronic transport in nanocrystalline silicon. Acta Physica Sinica, 2010, 59(12): 8862-8869. doi: 10.7498/aps.59.8862
    [8] Li Qiao-Hua, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Calculation of the electronic transmission spectra of a molecular device using a simplified model. Acta Physica Sinica, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [9] Tang Nai-Yun. Spin polarized current transport and charge polarization effect in ferromagnetic GaMnN resonant tunneling diode. Acta Physica Sinica, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [10] Zhu Lin, Chen Wei-Dong, Xie Zheng-Wei, Li Bo-Zang. The tunnel conductance and tunnel magnetic resistance of NM/FI/NI/FI/NM double spin filter junction. Acta Physica Sinica, 2006, 55(10): 5499-5505. doi: 10.7498/aps.55.5499
    [11] Li Xiao-Wei. The dc Josephson current in superconductor-ferromagnet/insulator/spin-triplet p-wave superconductor junctions. Acta Physica Sinica, 2006, 55(12): 6637-6642. doi: 10.7498/aps.55.6637
    [12] Xu Jing-Ping, Wang Li-Gang, Yang Ya-Ping. Realization of an angular filter using one-dimensional photonic crystal containing negative refractive metamaterials. Acta Physica Sinica, 2006, 55(6): 2765-2770. doi: 10.7498/aps.55.2765
    [13] Sun Yu-Hang, Li Fu-Li. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [14] Cheng Tai-Min, Xian Yu-Ze, Du An, Zou Jun-Ding. The softening of magnon of two-dimensional insulating ferromagnets at low temperatures. Acta Physica Sinica, 2005, 54(5): 2239-2246. doi: 10.7498/aps.54.2239
    [15] Cheng Tai-Min, Xianyu Ze, Du An. Magnon lifetime of two-dimensional insulating ferromagnet at low temperature. Acta Physica Sinica, 2005, 54(11): 5314-5323. doi: 10.7498/aps.54.5314
    [16] Hu Zhen-Hua, Huang De-Xiu. Study of luminescence due to delocalized exciton recombination in asymmetric-coupled quantum well structure based on Ξ-type configuration. Acta Physica Sinica, 2004, 53(4): 1195-1200. doi: 10.7498/aps.53.1195
    [17] Zhu Li     , Zheng Hou-Zhi, Tan Ping-Heng, Zhou Xia, Ji Yang, Yang Fu-Hua, Li Gui-Rong, Zeng Yu-Xin. Influence of level filling on optical properties of quantum well. Acta Physica Sinica, 2004, 53(12): 4334-4340. doi: 10.7498/aps.53.4334
    [18] Li Xiao-Wei. . Acta Physica Sinica, 2002, 51(8): 1821-1825. doi: 10.7498/aps.51.1821
    [19] Zhao Ji-Gang, Shao Bin, Wang Tai-Hong. . Acta Physica Sinica, 2002, 51(6): 1355-1359. doi: 10.7498/aps.51.1355
    [20] WANG CHUAN-KUI, JIANG ZHAO-TAN. QUANTUM BOUND STATES OF ONE KIND OF BENT QUANTUM WIRES. Acta Physica Sinica, 2000, 49(8): 1574-1579. doi: 10.7498/aps.49.1574
Metrics
  • Abstract views:  1092
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2023
  • Accepted Date:  18 July 2023
  • Available Online:  12 September 2023
  • Published Online:  20 November 2023

/

返回文章
返回