搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双自旋过滤隧道结中的隧穿时间

曾绍龙 李玲 谢征微

双自旋过滤隧道结中的隧穿时间

曾绍龙, 李玲, 谢征微
PDF
导出引用
导出核心图
  • 基于自由电子近似和Winful的隧穿时间模型,研究了普通金属/自旋过滤层/非磁绝缘层/自旋过滤层/普通金属(NM/SF/I/SF/NM)双自旋过滤隧道结中自旋相关的居留时间(dwell time)和相位时间(phase time).分别以居留时间和相位时间随入射电子能量、势垒高度和势垒宽度、以及分子场大小的变化情况做了讨论.计算结果表明:在低能隧穿区域(入射电子的能量小于势垒高度),由于自旋相关的自相干项的影响,不同自旋方向电子的相位时间总是大于居留时间;在高能隧穿区域(入射电子的能量大于势垒高度),自旋相关的自相干项的影响减小,不同自旋方向电子的相位时间和于居留时间趋于一致.NM/SF/I/SF/NM双自旋过滤隧道结中的居留时间和相位时间基本不受非磁绝缘层势垒高度和宽度变化的影响,该现象不同于常规的铁磁金属/非磁绝缘层/铁磁金属(FM/I/FM)隧道结.但当非磁绝缘层势垒高度低于自旋过滤层势垒高度时,改变非磁绝缘层的势垒高度和宽度会使居留时间和相位时间出现相峰值,该峰值的出现与不同自旋方向电子的共振隧穿有关.自旋过滤层的势垒高度的变化对NM/SF/I/SF/NM双自旋过滤隧道结中的居留时间和相位时间影响大,但宽度变化的影响较小.自旋过滤层中分子场的变化对不同自旋方向的电子的居留时间和相位时间有明显影响,且上自旋电子的居留时间和相位时间随分子场的增大而减少,而下自旋电子的情况刚好相反.
      通信作者: 谢征微, zzwxie@aliyun.com
    • 基金项目: 四川省教育厅自然科学基金重点项目(批准号:13ZA0149,16ZA0047),四川高校科研创新团队建设计划资助(批准号:12TD008)资助的课题.
    [1]

    Moodera J S, Santos T S, Nagahama T 2007J. Phys.:Condens. Matter 19 165202

    [2]

    Meservey R, Tedrow P M 1994Phys. Rep. 238 173

    [3]

    Saffarzadeh A 2004J. Magn. Magn. Mater. 269 327

    [4]

    Nagahana T, Santos T S, Moodera J S 2009Phys. Rev. Lett. 99 016602

    [5]

    Jin D F, Ren Y, Li Z Z, Xiao M W, Jin G J, Hu A 2006Phys. Rev. B 73 012414

    [6]

    He P B, Liu W M 2005Phys. Rev. B 72 064410

    [7]

    Li Y, Li B Z, Zhang W S, Dai D S 1998Phys. Rev. B 57 1079

    [8]

    Worledge D C, Geballe T H 2000J. Appl. Phys. 88 5277

    [9]

    Miao G X, Mller M, Moodera J S 2009Phys. Rev. Lett. 102 076601

    [10]

    Miao G X, Chang J Y, Assaf Badih A, Donald H 2014Nat. Comms. 5 3682

    [11]

    Miao G X, Moodera J S 2012Phys. Rev. B 85 144424

    [12]

    Lders U, Bibes M, Fusil S, Bouzehouane K, Jacquet E, Sommers C B, Contour J P, Bobo J F, Barthélémy A, Fert A, Levy P M 2007Phys. Rev. B 76 134412

    [13]

    Lders U, Barthélémy A, Bibes M, Bouzehouane K, Fusil S, Jacquet E, Contour J P, Bobo J F, Fontcuberta J, Fert A 2006Adv. Mat. 18 1733

    [14]

    Condon E U, Morse P M 1931Rev. Mod. Phys. 3 43

    [15]

    Wigner E P 1955Phys. Rev. 98 145

    [16]

    Smith F T 1960Phys. Rev. 118 349

    [17]

    Bttiker M 1983Phys. Rev. B 27 6178

    [18]

    Bttiker M, Landauer R 1982Phys. Rev. Lett. 49 1739

    [19]

    Landauer R, Martin Th 1994Rev. Mod. Phys. 66 217

    [20]

    Winful H G 2003Phys. Rev. Lett. 91 260401

    [21]

    Guo Y, Shang C E, Chen X Y 2005Phys. Rev. B 72 045356

    [22]

    Wang B, Guo Y, Gu B L 2002J. Appl. Phys. 91 1318

    [23]

    Wu H C, Guo Y, Chen X Y, Gu B L 2003J. Appl. Phys. 93 5316

    [24]

    Zhang Y T, Li Y C 2006J. Appl. Phys. 99 013907

    [25]

    Du J, Zhang P, Liu J H, Li J L, Li Y X 2008Acta Phys. Sin. 57 7221(in Chinese)[杜坚, 张鹏, 刘继红, 李金亮, 李玉现2008物理学报57 7221]

    [26]

    Slonczewski J C 1989Phys. Rev. B 39 6995

  • [1]

    Moodera J S, Santos T S, Nagahama T 2007J. Phys.:Condens. Matter 19 165202

    [2]

    Meservey R, Tedrow P M 1994Phys. Rep. 238 173

    [3]

    Saffarzadeh A 2004J. Magn. Magn. Mater. 269 327

    [4]

    Nagahana T, Santos T S, Moodera J S 2009Phys. Rev. Lett. 99 016602

    [5]

    Jin D F, Ren Y, Li Z Z, Xiao M W, Jin G J, Hu A 2006Phys. Rev. B 73 012414

    [6]

    He P B, Liu W M 2005Phys. Rev. B 72 064410

    [7]

    Li Y, Li B Z, Zhang W S, Dai D S 1998Phys. Rev. B 57 1079

    [8]

    Worledge D C, Geballe T H 2000J. Appl. Phys. 88 5277

    [9]

    Miao G X, Mller M, Moodera J S 2009Phys. Rev. Lett. 102 076601

    [10]

    Miao G X, Chang J Y, Assaf Badih A, Donald H 2014Nat. Comms. 5 3682

    [11]

    Miao G X, Moodera J S 2012Phys. Rev. B 85 144424

    [12]

    Lders U, Bibes M, Fusil S, Bouzehouane K, Jacquet E, Sommers C B, Contour J P, Bobo J F, Barthélémy A, Fert A, Levy P M 2007Phys. Rev. B 76 134412

    [13]

    Lders U, Barthélémy A, Bibes M, Bouzehouane K, Fusil S, Jacquet E, Contour J P, Bobo J F, Fontcuberta J, Fert A 2006Adv. Mat. 18 1733

    [14]

    Condon E U, Morse P M 1931Rev. Mod. Phys. 3 43

    [15]

    Wigner E P 1955Phys. Rev. 98 145

    [16]

    Smith F T 1960Phys. Rev. 118 349

    [17]

    Bttiker M 1983Phys. Rev. B 27 6178

    [18]

    Bttiker M, Landauer R 1982Phys. Rev. Lett. 49 1739

    [19]

    Landauer R, Martin Th 1994Rev. Mod. Phys. 66 217

    [20]

    Winful H G 2003Phys. Rev. Lett. 91 260401

    [21]

    Guo Y, Shang C E, Chen X Y 2005Phys. Rev. B 72 045356

    [22]

    Wang B, Guo Y, Gu B L 2002J. Appl. Phys. 91 1318

    [23]

    Wu H C, Guo Y, Chen X Y, Gu B L 2003J. Appl. Phys. 93 5316

    [24]

    Zhang Y T, Li Y C 2006J. Appl. Phys. 99 013907

    [25]

    Du J, Zhang P, Liu J H, Li J L, Li Y X 2008Acta Phys. Sin. 57 7221(in Chinese)[杜坚, 张鹏, 刘继红, 李金亮, 李玉现2008物理学报57 7221]

    [26]

    Slonczewski J C 1989Phys. Rev. B 39 6995

  • [1] 黎明, 陈军, 宫箭. InAs/InP柱型量子线中隧穿时间和逃逸问题的研究. 物理学报, 2014, 63(23): 237303. doi: 10.7498/aps.63.237303
    [2] 张红梅, 贾秀敏, 刘德. 对称抛物势阱磁性隧道结中的自旋输运及磁电阻效应. 物理学报, 2011, 60(1): 017506. doi: 10.7498/aps.60.017506
    [3] 黄政, 龙超云, 周勋, 徐明. 双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究. 物理学报, 2016, 65(15): 157301. doi: 10.7498/aps.65.157301
    [4] 朱朕, 李春先, 张振华. 功能化扶手椅型石墨烯纳米带异质结的磁器件特性. 物理学报, 2016, 65(11): 118501. doi: 10.7498/aps.65.118501
    [5] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应. 物理学报, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [6] 张 喆, 朱 涛, 冯玉清, 张 泽. Co基磁性隧道结势垒结构的电子全息研究. 物理学报, 2005, 54(12): 5861-5866. doi: 10.7498/aps.54.5861
    [7] 侯利娜, 姚淑德, 冯玉清, 朱 涛, 詹文山. 具有纳米氧化层的磁性隧道结的热稳定性研究. 物理学报, 2005, 54(9): 4340-4344. doi: 10.7498/aps.54.4340
    [8] 李飞飞, 张谢群, 杜关祥, 王天兴, 曾中明, 魏红祥, 韩秀峰. 高磁电阻磁性隧道结的几种微制备方法研究. 物理学报, 2005, 54(8): 3831-3838. doi: 10.7498/aps.54.3831
    [9] 王天兴, 魏红祥, 李飞飞, 张爱国, 曾中明, 詹文山, 韩秀峰. 4英寸热氧化硅衬底上磁性隧道结的微制备. 物理学报, 2004, 53(11): 3895-3901. doi: 10.7498/aps.53.3895
    [10] 金恩姬, 由 臣, 赵燕平, 李飞飞, 王天兴, 曾中明, 彭子龙. 利用金属掩模法制备钉扎型磁性隧道结. 物理学报, 2004, 53(8): 2741-2745. doi: 10.7498/aps.53.2741
    [11] 谢征微, 李伯臧. 处理具有任意形状势垒的磁性隧道结中电子输运的一个简单方法. 物理学报, 2002, 51(2): 399-405. doi: 10.7498/aps.51.399
    [12] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [13] 赵 昆, 冯玉清, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究. 物理学报, 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [14] 彭子龙, 韩秀峰, 赵素芬, 魏红祥, 杜关祥, 詹文山. 磁随机存储器中垂直电流驱动的磁性隧道结自由层的磁化翻转. 物理学报, 2006, 55(2): 860-864. doi: 10.7498/aps.55.860
    [15] L. H. Li, J. Gao, 李培刚, 唐为华. La2/3Ca1/3MnO3/Eu2CuO4/La2/3Ca1/3MnO3磁性隧道结的制备与表征. 物理学报, 2005, 54(1): 291-294. doi: 10.7498/aps.54.291
    [16] 徐庆宇, 倪 刚, 桑 海, 都有为, 刘存业. Fe/Al2O3/Fe隧道结特性分析. 物理学报, 2000, 49(9): 1897-1900. doi: 10.7498/aps.49.1897
    [17] 朱林, 金莲, 李玲, 谢征微. 多层结构双自旋过滤隧道结中的电子输运特性. 物理学报, 2009, 58(12): 8577-8583. doi: 10.7498/aps.58.8577
    [18] 曾中明, 韩秀峰, 杜关祥, 詹文山, 王 勇, 张 泽. 双势垒磁性隧道结的磁电阻效应及其在自旋晶体管中的应用. 物理学报, 2005, 54(7): 3351-3356. doi: 10.7498/aps.54.3351
    [19] 朱 林, 陈卫东, 谢征微, 李伯臧. NM/FI/NI/FI/NM新型双自旋过滤隧道结的隧穿电导和隧穿磁电阻. 物理学报, 2006, 55(10): 5499-5505. doi: 10.7498/aps.55.5499
    [20] 吴义华, 王振彦, 沈瑞. 超导隧道结中的电流相位关系. 物理学报, 2009, 58(12): 8591-8595. doi: 10.7498/aps.58.8591
  • 引用本文:
    Citation:
计量
  • 文章访问数:  488
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-04
  • 修回日期:  2016-08-21
  • 刊出日期:  2016-11-20

双自旋过滤隧道结中的隧穿时间

  • 1. 四川师范大学物理与电子工程学院, 成都 610068
  • 通信作者: 谢征微, zzwxie@aliyun.com
    基金项目: 

    四川省教育厅自然科学基金重点项目(批准号:13ZA0149,16ZA0047),四川高校科研创新团队建设计划资助(批准号:12TD008)资助的课题.

摘要: 基于自由电子近似和Winful的隧穿时间模型,研究了普通金属/自旋过滤层/非磁绝缘层/自旋过滤层/普通金属(NM/SF/I/SF/NM)双自旋过滤隧道结中自旋相关的居留时间(dwell time)和相位时间(phase time).分别以居留时间和相位时间随入射电子能量、势垒高度和势垒宽度、以及分子场大小的变化情况做了讨论.计算结果表明:在低能隧穿区域(入射电子的能量小于势垒高度),由于自旋相关的自相干项的影响,不同自旋方向电子的相位时间总是大于居留时间;在高能隧穿区域(入射电子的能量大于势垒高度),自旋相关的自相干项的影响减小,不同自旋方向电子的相位时间和于居留时间趋于一致.NM/SF/I/SF/NM双自旋过滤隧道结中的居留时间和相位时间基本不受非磁绝缘层势垒高度和宽度变化的影响,该现象不同于常规的铁磁金属/非磁绝缘层/铁磁金属(FM/I/FM)隧道结.但当非磁绝缘层势垒高度低于自旋过滤层势垒高度时,改变非磁绝缘层的势垒高度和宽度会使居留时间和相位时间出现相峰值,该峰值的出现与不同自旋方向电子的共振隧穿有关.自旋过滤层的势垒高度的变化对NM/SF/I/SF/NM双自旋过滤隧道结中的居留时间和相位时间影响大,但宽度变化的影响较小.自旋过滤层中分子场的变化对不同自旋方向的电子的居留时间和相位时间有明显影响,且上自旋电子的居留时间和相位时间随分子场的增大而减少,而下自旋电子的情况刚好相反.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回