Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband ultrafast photogenerated carrier dynamics induced by intrinsic defects in $\boldsymbol\beta$-Ga2O3

Wang Lu-Xuan Liu Yi-Tong Shi Fang-Yuan Qi Xian-Wen Shen Han Song Ying-Lin Fang Yu

Citation:

Broadband ultrafast photogenerated carrier dynamics induced by intrinsic defects in $\boldsymbol\beta$-Ga2O3

Wang Lu-Xuan, Liu Yi-Tong, Shi Fang-Yuan, Qi Xian-Wen, Shen Han, Song Ying-Lin, Fang Yu
PDF
HTML
Get Citation
  • The ultra-wide bandgap semiconductor gallium oxide β-Ga2O3 with enhanced resistance to the irradiation and temperature is favorable for high-power and high-temperature optoelectronic devices. β-Ga2O3 also exhibits great potential applications in the field of integrated photonics because of its compatibility with the CMOS technique. However, a variety of intrinsic and extrinsic defects and trap states coexist in β-Ga2O3, including vacancies, interstitials, and impurity atoms. The defect-related carrier dynamics in β-Ga2O3 not only adversely affect the optical and electrical properties, but also directly limit the performance of β-Ga2O3 based devices. Therefore, a comprehensive understanding of the carrier transportation and relaxation dynamics induced by intrinsic defects is very important. Supercontinuum-probe spectroscopy can provide a fruitful information about the carrier relaxation processes in different recombination mechanisms, and thus becomes an effective way to study the defect dynamics. In this work, we study the dynamics of carrier trapping and recombination induced by intrinsic defects in pristine β-Ga2O3 crystal by using wavelength-tunable ultrafast transient absorption spectroscopy. The broadband absorption spectra induced by the intrinsic defects are strongly dependent on the polarization of pump pulse and probe pulse. Particularly, two absorption peaks induced by the two defect states can be extracted from the transient absorption spectra by subtracting the absorption transients under two probe polarizations. The observed defect-induced absorption features are attributed to the optical transitions from the valence band to the different charge states of the intrinsic defects (such as gallium vacancy). The data are well explained by a proposed carrier capture model based on multi-level energies. Moreover, the hole capture rate is found to be much greater than that of the electron, and the absorption cross-section of the defect state is at least 10 times larger than that of free carrier. Our findings not only clarify the relationship between intrinsic defects and photogenerated carrier dynamics, but also show the importance in the application of β-Ga2O3 crystals in ultrafast and broadband photonics.
      Corresponding author: Fang Yu, yufang@usts.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11704273), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20221384), the Jiangsu Key Disciplines of the Fourteenth Five-Year Plan, China (Grant No. 2021135), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX22_3267), and the Undergraduate Training Programs for Innovation and Entrepreneurship of Suzhou University of Science and Technology, China (Grant Nos. 202310332270X, 2022011002X).
    [1]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [2]

    Higashiwaki M, Kaplar R, Pernot J, Zhao H P 2021 Appl. Phys. Lett. 118 200401Google Scholar

    [3]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2012 Appl. Phys. Lett. 100 013504Google Scholar

    [4]

    Chen X H, Ren F F, Gu S L, Ye 2019 Photonics Res. 7 381Google Scholar

    [5]

    Guo D Y, Guo Q, Chen Z, Wu Z, Li P, Tang W H 2019 Mater. Today Phys. 11 100157Google Scholar

    [6]

    Tadjer M J, Lyons J L, Nepal N, Freitas Jr J A, Koehler A D, Foster G M 2019 ECS J. Solid State Sci. Technol. 8 Q3187Google Scholar

    [7]

    McCluskey M D 2020 J. Appl. Phys. 127 101101Google Scholar

    [8]

    Zhang J, Shi J, Qi D C, Chen L, Zhang K H L 2020 APL Mater. 8 020906Google Scholar

    [9]

    Koksal Q, Tanen N, Jena D, Xing H G, Rana F 2018 Appl. Phys. Lett. 113 252102Google Scholar

    [10]

    Varley J B, Weber J R, Janotti A, Van de Walle C G 2010 Appl. Phys. Lett. 97 142106Google Scholar

    [11]

    Kananen B E, Halliburton L E, Scherrer E M, et al. 2017 Appl. Phys. Lett. 111 072102Google Scholar

    [12]

    Feng Z, Bhuiyan A F M, Kalarickal N K, Rajan S, Zhao H 2020 Appl. Phys. Lett. 117 222106Google Scholar

    [13]

    Sun Y F, Li Z G, Fang Y, Wu X Z, Zhou W F, Jia Z T, Yang J Y, Song Y L 2022 Appl. Phys. Lett. 120 032101Google Scholar

    [14]

    Zhang Z, Farzana E, Arehart A R, Ringel S A 2016 Appl. Phys. Lett. 108 052105Google Scholar

    [15]

    Islam M M, Rana D, Hernandez A, Haseman M, Selim F A 2019 J. Appl. Phys. 125 055701Google Scholar

    [16]

    Islam M M, Adhikari N, Hernandez A, et al. 2020 J. Appl. Phys. 127 145701Google Scholar

    [17]

    Yamaoka S, Furukawa Y, Nakayama M 2017 Phys. Rev. B 95 094304Google Scholar

    [18]

    Gao H, Muralidharan S, Pronin N, et al. 2018 Appl. Phys. Lett. 112 242102Google Scholar

    [19]

    Skachkov W R L, Lambrecht H J, von Bardeleben U 2019 J. Appl. Phys. 125 185701Google Scholar

    [20]

    Montes J, Kopas C, Chen H, et al. 2020 J. Appl. Phys. 128 205701Google Scholar

    [21]

    Othonos A, Zervos M, Christofides C 2010 J. Appl. Phys. 108 124302Google Scholar

    [22]

    Singh A, Koksal O, Tanen N, McCandless J, Jena D, Xing H G, Peelaers H, Rana F 2021 Phys. Rev. Res. 3 023154Google Scholar

    [23]

    Cho J B, Jung G, Kim K, Kim J, Hong S K, Song J H, Jang J I 2021 J. Phys. Chem. C 125 1432Google Scholar

    [24]

    方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林 2020 物理学报 69 168701Google Scholar

    Fang Y, Wu X Z, Chen Y Q, Yang J Y, Song Y L 2020 Acta Phys. Sin. 69 168701Google Scholar

    [25]

    Fang Y, Wu X Z, Yang J Y, Wang J P, Wu Q Y, Song Y L 2021 Appl. Phys. Lett. 118 112105Google Scholar

    [26]

    Fang Y, Yang J Y, Yang Y, Wu X Z, Xiao Z G, Zhou F, Song Y L 2015 Journal of Phys. D: Appl. Phys. 49 045105Google Scholar

    [27]

    王建苹, 吴幸智, 杨俊义, 陈永强, 吴泉英, 宋瑛林, 方宇 2022 光学学报 42 2219001Google Scholar

    Wang J P, Wu X Z, Yang J Y, Chen Y Q, Wu Q Y, Song Y L, Fang Y 2022 Acta Opt. Sin. 42 2219001Google Scholar

    [28]

    Singh A, Koksal O, Tanen N, McCandless J, Jena D, Xing H L, Peelaers H, Rana F 2020 Appl. Phys. Lett. 117 072103Google Scholar

    [29]

    Chen H, Fu H, Huang X, Montes J A, Yang T H, Baranowski I, Zhao Y 2018 Opt. Express 26 3938Google Scholar

    [30]

    Sun Y F, Fang Y, Li Z G, Yang J Y, Zhou W F, Liu K, Song Y L 2021 J. Phys. D: Appl. Phys. 54 495105Google Scholar

    [31]

    Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S 2016 J. Appl. Phys. 55 1202A2Google Scholar

    [32]

    Luchechko A, Vasyltsiv V, Zhydachevskyy Y, et al. 2020 J. Phys. D: Appl. Phys. 53 354001Google Scholar

    [33]

    Galazka Z, Ganschow S, Fiedler A, et al. 2018 J. Cryst. Growth 486 82Google Scholar

    [34]

    Peelaers H, Van de Walle C G 2019 Phys. Rev. B 100 081202Google Scholar

    [35]

    Varley J B, Peelaers H, Janotti A, Van de Walle C G 2011 J. Phys. Condens. Matter 23 334212Google Scholar

    [36]

    Deák P, Ho Q D, Seemann F, Aradi B, Lorke M, Frauenheim T 2017 Phys. Rev. B 95 075208Google Scholar

    [37]

    Ingebrigtsen M E, Kuznetsov A Y, Svensson B G, Alfieri G, Mihaila A, Badstübner U, Perron A, Vines L, Varley J B 2019 APL Mater. 7 022510Google Scholar

    [38]

    Johnson J M, Chen Z, Varley J B, et al. 2019 Phys. Rev. X 9 041027Google Scholar

    [39]

    Nie Y Y, Jiao S J, Li S F, et al. 2022 J. Alloys Compd. 900 163431Google Scholar

    [40]

    Farzana E, Ahmadi E, Speck J S, Arehart A R, Ringel S A 2018 J. Appl. Phys. 123 161410Google Scholar

    [41]

    Zimmermann C, Rønning V, Frodason Y K, Bobal V, Vines L, Varley J B 2020 Phys. Rev. Mater. 4 074605Google Scholar

    [42]

    Fang Y, Wu X Z, Yang J Y, Xiao Z G, Yang Y, Zhou F, Song Y L 2015 Appl. Phys. Lett. 107 051901Google Scholar

    [43]

    Ščajev P, Jarašiūnas K, Leach J 2020 J. Appl. Phys. 127 245705Google Scholar

    [44]

    Reshchikov M A, Vorobiov M, Demchenko D O, et al. 2018 Phys. Rev. B 98 125207Google Scholar

  • 图 1  (a) UID和Sn掺杂β-Ga2O3的透射光谱, 箭头表示泵浦光波长; (b)不同入射光强下β-Ga2O3的开孔Z扫描曲线, 实线为理论拟合曲线

    Figure 1.  (a) Optical transmission spectra of UID and Sn-doped β-Ga2O3, where the arrow denotes the pump wavelength; (b) open-aperture Z-scan data of β-Ga2O3 at different incident light intensities, where the solid lines are theoretical fitting curves.

    图 2  在不同的延迟时间下, 沿(a) [010]和(b) [102]晶轴探测下UID β-Ga2O3晶体的瞬态吸收光谱; 沿(c) [010]和(d) [102]轴探测下提取的不同波长吸收衰减动力学. 泵浦脉冲固定为沿[102]轴偏振

    Figure 2.  Transient absorption spectra of the UID β-Ga2O3 crystal probed at different delay times for different probe polarizations with respect to the (a) [010] and (b) [102] crystal axes. Extracted decay dynamics of absorption under different probe wavelengths for probe polarization along the (c) [010] and (d) [102] axes. The pump pulse is fixed to be polarized along the [102] axis.

    图 3  td = 2 ps处沿(a) [010]和(b) [102]晶轴探测偏振下的缺陷吸收光谱(数据点); (c)两个探测偏振方向的差分瞬态吸收ΔmOD*. 所有的缺陷吸收光谱都可以用两个高斯函数(虚线)进行拟合

    Figure 3.  Defect absorption spectra (dots) as a function of probe photon energy for polarization along the (a) [010] and (b) [102] crystal axes at td = 2 ps; (c) the difference transients ΔmOD* between two probe polarization directions. All the defect absorption spectra can be fitted using two Gaussian functions (dashed lines).

    图 4  双光子激发(2PE)载流子俘获和本征缺陷吸收图, VGa相关缺陷的多电荷态($ {2{\rm{V}}}_{{\rm{G}}{\rm{a}}}^{1}{\text{-}}{{\rm{G}}{\rm{a}}}_{{\rm{i}}}^{{\rm{c}}} $)可以被泵浦脉冲激发并允许载流子俘获和光学跃迁(探测脉冲所经历的瞬态吸收)

    Figure 4.  Diagram of two-photon excited (2PE) carrier capture and the intrinsic defect absorption, the multiple charge states of the VGa-related defects ($ {2{\rm{V}}}_{{\rm{G}}{\rm{a}}}^{1}{\text{-}}{{\rm{G}}{\rm{a}}}_{{\rm{i}}}^{{\rm{c}}} $ is for consideration) can be excited by pump pulses and allow carrier trapping (black arrows) and optical transitions (transient absorption experienced by the probe pulses).

    图 5  (a)—(c)泵浦光沿[102]轴偏振时, 测量和拟合得到的不同探测偏振和波长下UID β-Ga2O3的吸收动力学

    Figure 5.  (a)–(c) Measured and computed absorption kinetics in UID β-Ga2O3 for different probe polarizations and wavelengths when pumped along the [102] axis.

    表 1  提取的瞬态吸收动力学模型参数

    Table 1.  Extracted parameters to model the transient absorption kinetics.

    参数 数值
    Nd/cm3 (1.7±0.2)×1016
    $C_{\text{p}}^{ - 2}$/(cm3·s) (1.6±0.3)×10–6
    $C_{\text{p}}^{ - 1}$/(cm3·s) (1.3±0.2)×10–6
    σ–1 |max// [010]/cm2 (1.4±0.4)×10–17
    σ–1 |max// [102]/cm2 (2.3±0.5)×10–17
    σ0 |max// [102]/cm2 (2.2±0.6)×10–17
    DownLoad: CSV
  • [1]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [2]

    Higashiwaki M, Kaplar R, Pernot J, Zhao H P 2021 Appl. Phys. Lett. 118 200401Google Scholar

    [3]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2012 Appl. Phys. Lett. 100 013504Google Scholar

    [4]

    Chen X H, Ren F F, Gu S L, Ye 2019 Photonics Res. 7 381Google Scholar

    [5]

    Guo D Y, Guo Q, Chen Z, Wu Z, Li P, Tang W H 2019 Mater. Today Phys. 11 100157Google Scholar

    [6]

    Tadjer M J, Lyons J L, Nepal N, Freitas Jr J A, Koehler A D, Foster G M 2019 ECS J. Solid State Sci. Technol. 8 Q3187Google Scholar

    [7]

    McCluskey M D 2020 J. Appl. Phys. 127 101101Google Scholar

    [8]

    Zhang J, Shi J, Qi D C, Chen L, Zhang K H L 2020 APL Mater. 8 020906Google Scholar

    [9]

    Koksal Q, Tanen N, Jena D, Xing H G, Rana F 2018 Appl. Phys. Lett. 113 252102Google Scholar

    [10]

    Varley J B, Weber J R, Janotti A, Van de Walle C G 2010 Appl. Phys. Lett. 97 142106Google Scholar

    [11]

    Kananen B E, Halliburton L E, Scherrer E M, et al. 2017 Appl. Phys. Lett. 111 072102Google Scholar

    [12]

    Feng Z, Bhuiyan A F M, Kalarickal N K, Rajan S, Zhao H 2020 Appl. Phys. Lett. 117 222106Google Scholar

    [13]

    Sun Y F, Li Z G, Fang Y, Wu X Z, Zhou W F, Jia Z T, Yang J Y, Song Y L 2022 Appl. Phys. Lett. 120 032101Google Scholar

    [14]

    Zhang Z, Farzana E, Arehart A R, Ringel S A 2016 Appl. Phys. Lett. 108 052105Google Scholar

    [15]

    Islam M M, Rana D, Hernandez A, Haseman M, Selim F A 2019 J. Appl. Phys. 125 055701Google Scholar

    [16]

    Islam M M, Adhikari N, Hernandez A, et al. 2020 J. Appl. Phys. 127 145701Google Scholar

    [17]

    Yamaoka S, Furukawa Y, Nakayama M 2017 Phys. Rev. B 95 094304Google Scholar

    [18]

    Gao H, Muralidharan S, Pronin N, et al. 2018 Appl. Phys. Lett. 112 242102Google Scholar

    [19]

    Skachkov W R L, Lambrecht H J, von Bardeleben U 2019 J. Appl. Phys. 125 185701Google Scholar

    [20]

    Montes J, Kopas C, Chen H, et al. 2020 J. Appl. Phys. 128 205701Google Scholar

    [21]

    Othonos A, Zervos M, Christofides C 2010 J. Appl. Phys. 108 124302Google Scholar

    [22]

    Singh A, Koksal O, Tanen N, McCandless J, Jena D, Xing H G, Peelaers H, Rana F 2021 Phys. Rev. Res. 3 023154Google Scholar

    [23]

    Cho J B, Jung G, Kim K, Kim J, Hong S K, Song J H, Jang J I 2021 J. Phys. Chem. C 125 1432Google Scholar

    [24]

    方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林 2020 物理学报 69 168701Google Scholar

    Fang Y, Wu X Z, Chen Y Q, Yang J Y, Song Y L 2020 Acta Phys. Sin. 69 168701Google Scholar

    [25]

    Fang Y, Wu X Z, Yang J Y, Wang J P, Wu Q Y, Song Y L 2021 Appl. Phys. Lett. 118 112105Google Scholar

    [26]

    Fang Y, Yang J Y, Yang Y, Wu X Z, Xiao Z G, Zhou F, Song Y L 2015 Journal of Phys. D: Appl. Phys. 49 045105Google Scholar

    [27]

    王建苹, 吴幸智, 杨俊义, 陈永强, 吴泉英, 宋瑛林, 方宇 2022 光学学报 42 2219001Google Scholar

    Wang J P, Wu X Z, Yang J Y, Chen Y Q, Wu Q Y, Song Y L, Fang Y 2022 Acta Opt. Sin. 42 2219001Google Scholar

    [28]

    Singh A, Koksal O, Tanen N, McCandless J, Jena D, Xing H L, Peelaers H, Rana F 2020 Appl. Phys. Lett. 117 072103Google Scholar

    [29]

    Chen H, Fu H, Huang X, Montes J A, Yang T H, Baranowski I, Zhao Y 2018 Opt. Express 26 3938Google Scholar

    [30]

    Sun Y F, Fang Y, Li Z G, Yang J Y, Zhou W F, Liu K, Song Y L 2021 J. Phys. D: Appl. Phys. 54 495105Google Scholar

    [31]

    Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S 2016 J. Appl. Phys. 55 1202A2Google Scholar

    [32]

    Luchechko A, Vasyltsiv V, Zhydachevskyy Y, et al. 2020 J. Phys. D: Appl. Phys. 53 354001Google Scholar

    [33]

    Galazka Z, Ganschow S, Fiedler A, et al. 2018 J. Cryst. Growth 486 82Google Scholar

    [34]

    Peelaers H, Van de Walle C G 2019 Phys. Rev. B 100 081202Google Scholar

    [35]

    Varley J B, Peelaers H, Janotti A, Van de Walle C G 2011 J. Phys. Condens. Matter 23 334212Google Scholar

    [36]

    Deák P, Ho Q D, Seemann F, Aradi B, Lorke M, Frauenheim T 2017 Phys. Rev. B 95 075208Google Scholar

    [37]

    Ingebrigtsen M E, Kuznetsov A Y, Svensson B G, Alfieri G, Mihaila A, Badstübner U, Perron A, Vines L, Varley J B 2019 APL Mater. 7 022510Google Scholar

    [38]

    Johnson J M, Chen Z, Varley J B, et al. 2019 Phys. Rev. X 9 041027Google Scholar

    [39]

    Nie Y Y, Jiao S J, Li S F, et al. 2022 J. Alloys Compd. 900 163431Google Scholar

    [40]

    Farzana E, Ahmadi E, Speck J S, Arehart A R, Ringel S A 2018 J. Appl. Phys. 123 161410Google Scholar

    [41]

    Zimmermann C, Rønning V, Frodason Y K, Bobal V, Vines L, Varley J B 2020 Phys. Rev. Mater. 4 074605Google Scholar

    [42]

    Fang Y, Wu X Z, Yang J Y, Xiao Z G, Yang Y, Zhou F, Song Y L 2015 Appl. Phys. Lett. 107 051901Google Scholar

    [43]

    Ščajev P, Jarašiūnas K, Leach J 2020 J. Appl. Phys. 127 245705Google Scholar

    [44]

    Reshchikov M A, Vorobiov M, Demchenko D O, et al. 2018 Phys. Rev. B 98 125207Google Scholar

  • [1] Wang Fei, Yang Zhen-Qing, Xia Yu-Hong, Liu Chang, Lin Chun-Dan. Nonadiabatic molecular dynamics study on effect of Ge/Sn alloy on hot carrier relaxation of CsPbBr3 perovskite. Acta Physica Sinica, 2024, 73(2): 028801. doi: 10.7498/aps.73.20231061
    [2] Liu Wei, Feng Qiu-Ju, Yi Zi-Qi, Yu Chen, Wang Shuo, Wang Yan-Ming, Sui Xue, Liang Hong-Wei. Preparation and ultraviolet detection performance of Cu doped β-Ga2O3 thin films. Acta Physica Sinica, 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [3] Zhou Zhan-Hui, Li Qun, He Xiao-Min. Electron transport mechanism in AlN/β-Ga2O3 heterostructures. Acta Physica Sinica, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [4] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [5] Shen Huan, Hua Lin-Qiang, Wei Zheng-Rong. Solvent effect on ultrafast decay of uracil studied by femtosecond transient absorption spectroscopy. Acta Physica Sinica, 2022, 71(18): 184206. doi: 10.7498/aps.71.20220515
    [6] Huang Hao, Niu Ben, Tao Ting-Ting, Luo Shi-Ping, Wang Ying, Zhao Xiao-Hui, Wang Kai, Li Zhi-Qiang, Dang Wei. Ultrafast carrier kinetics at surface and interface of Sb2Se3 film by transient reflectance. Acta Physica Sinica, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [7] Effect of film thickness on photoelectric properties of β-Ga2O3 films by radio frequency magnetron sputtering*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211744
    [8] Long Ze, Xia Xiao-Chuan, Shi Jian-Jun, Liu Jun, Geng Xin-Lei, Zhang He-Zhi, Liang Hong-Wei. Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal. Acta Physica Sinica, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [9] Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin. Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy. Acta Physica Sinica, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [10] Qi Qi, Chen Hai-Feng, Hong Zi-fan, Liu Ying-Ying, Guo Li-Xin, Li Li-Jun, Lu Qin, Jia Yi-Fan. Preparation and characteristics of ultra-wide Ga2O3 nanoribbons up to millimeter-long level without catalyst. Acta Physica Sinica, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [11] Hong Zi-Fan, Chen Hai-Feng, Jia Yi-Fan, Qi Qi, Liu Ying-Ying, Guo Li-Xin, Liu Xiang-Tai, Lu Qin, Li Li-Jun, Wang Shao-Qing, Guan Yun-He, Hu Qi-Ren. Characteristics of Ga2O3 epitaxial films on seed layer grown by magnetron sputtering. Acta Physica Sinica, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [12] Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang. Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials. Acta Physica Sinica, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [13] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [14] Fang Shao-Yin, Lu Hai-Ming, Lai Tian-Shu. Effects of spin polarization on absorption saturation and recombination dynamics of carriers in (001) GaAs quantum wells. Acta Physica Sinica, 2015, 64(15): 157201. doi: 10.7498/aps.64.157201
    [15] Zheng Shu-Wen, Fan Guang-Han, He Miao, Zhao Ling-Zhi. Theoretical study of the effect of W-doping on the conductivity of β-Ga2O3. Acta Physica Sinica, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [16] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [17] Zuo Fang-Yuan, Wang Yang, Wu Yi-Qun, Lai Tian-Shu. Study of ultrafast carrier dynamics in amorphous Ge2Sb2Te5 film by femtosecond-resolved reflectivity spectroscopy. Acta Physica Sinica, 2009, 58(10): 7250-7254. doi: 10.7498/aps.58.7250
    [18] Lin Qiong-Fei, Xia Hai-Ping, Wang Jin-Hao, Zhang Yue-Pin, Zhang Qin-Yuan. Effect of Ga2O3 on the spectroscopic properties of Tm3+-doped GeO2-Ga2O3-Li2O-BaO-La2O3 glasses. Acta Physica Sinica, 2008, 57(4): 2554-2561. doi: 10.7498/aps.57.2554
    [19] WANG TIAN-MIN, GU QIANG, XING ZHI-QIANG. MOLECULAR DYNAMICS STUDIES FOR POINT DEFECTS IN Cu3Au AND Au3Cu AND POINT DEFECT PROPERTIES OF ALLOYS WITH L12 STRUCTURE. Acta Physica Sinica, 1997, 46(1): 101-108. doi: 10.7498/aps.46.101
    [20] FU CHUN-YIN, LU YONG-LING, ZENG SHU-RONG. KINETICS OF THE CAPTURING FROM THE FREE MAJORITY CARRIER TAIL REGION AND MEASUREMENT OF THE MAJORITY CARRIER CAPTURE CROSS SECTION. Acta Physica Sinica, 1988, 37(3): 485-489. doi: 10.7498/aps.37.485
Metrics
  • Abstract views:  1823
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2023
  • Accepted Date:  16 August 2023
  • Available Online:  24 August 2023
  • Published Online:  05 November 2023

/

返回文章
返回