搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究

冯秋菊 李芳 李彤彤 李昀铮 石博 李梦轲 梁红伟

外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究

冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟
PDF
导出引用
导出核心图
  • 利用外电场辅助化学气相沉积(CVD)方法,在蓝宝石衬底上制备出了由三组生长方向构成的网格状β-Ga2O3纳米线.研究了不同外加电压大小对β-Ga2O3纳米线表面形貌、晶体结构以及光学特性的影响.结果表明:外加电压的大小对样品的表面形貌有着非常大的影响,有外加电场作用时生长的β-Ga2O3纳米线取向性开始变好,只出现了由三组不同生长方向构成的网格状β-Ga2O3纳米线;并且随着外加电压的增加,纳米线分布变得更加密集、长度明显增长.此外,采用这种外电场辅助的CVD方法可以明显改善样品的结晶和光学质量.
      通信作者: 冯秋菊, qjfeng@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61574026,11405017)和辽宁省自然科学基金(批准号:201602453)资助的课题.
    [1]

    Ma H L, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322 (in Chinese)[马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322]

    [2]

    Feng Q J, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C, Liang H W 2016 J. Alloys Compd. 687 964

    [3]

    Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972

    [4]

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701 (in Chinese)[马海林, 苏庆 2014 物理学报 63 116701]

    [5]

    Hegde M, Hosein I D, Radovanovic P V 2015 J. Phys. Chem. C 119 17450

    [6]

    Kumar R, Dubey P K, Singh R K, Vaz A R, Moshkalev S A 2016 RSC Adv. 6 17669

    [7]

    Miller D R, Akbar S A, Morris P A 2017 Nano-Micro Lett. 9 33

    [8]

    Gu Y Y, Su Y J, Chen D, Geng H J, Li Z L, Zhang L Y, Zhang Y F 2014 Cryst. Eng. Comm. 16 9185

    [9]

    Tang C M, Liao X Y, Zhong W J, Yu H Y, Liu Z W 2017 RSC Adv. 7 6439

    [10]

    Peng M Z, Zheng X H, Ma Z G, Chen H, Liu S J, He Y F, Li M L 2018 Sens. Actuators, B 256 367

    [11]

    Li Y W, Stoica V A, Sun K, Liu W, Endicott L, Walrath J C, Chang A S, Lin Y H, Pipe K P, Goldman R S, Uher C, Clarke R 2014 Appl. Phys. Lett. 105 201904

    [12]

    Tsivion D, Schvartzman M, Popovitz B R, Huth P V, Joselevich E 2011 Science 333 1003

    [13]

    Lee S A, Hwang J Y, Kim J P, Jeong S Y, Cho C R 2006 Appl. Phys. Lett. 89 182906

    [14]

    Kang B K, Mang S R, Lim H D, Song K M, Song Y H, Go D H, Jung M K, Senthil K, Yoon D H 2014 Mater. Chem. Phys. 147 178

    [15]

    Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001

    [16]

    Jangir R, Porwal S, Tiwari P, Mondal P, Rai S K, Srivastava A K, Bhaumik I, Ganguli T 2016 AIP Adv. 6 035120

    [17]

    Lee S Y, Choi K H, Kang H C 2016 Mater. Lett. 176 213

    [18]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Phys. Mater. C 3 4678

    [19]

    Terasako T, Kawasaki Y, Yagi M 2016 Thin Solid Films 620 23

    [20]

    Smith P A, Nordquist C D, Jackson T N, Mayer T S 2000 Appl. Phys. Lett. 77 1399

    [21]

    Kumar M S, Lee S H, Kim T Y, Kim T H, Song S M, Yang J W, Nahm K S, Suh E K 2003 Solid-State Electron. 47 2075

    [22]

    Zong X, Zhu R 2014 Nanoscale 6 12732

    [23]

    Kumar S, Sarau G, Tessarek C, Bashouti M Y, Hähnel A, Christiansen S, Singh R 2014 J. Phys. D: Appl. Phys. 47 435101

  • [1]

    Ma H L, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322 (in Chinese)[马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322]

    [2]

    Feng Q J, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C, Liang H W 2016 J. Alloys Compd. 687 964

    [3]

    Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972

    [4]

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701 (in Chinese)[马海林, 苏庆 2014 物理学报 63 116701]

    [5]

    Hegde M, Hosein I D, Radovanovic P V 2015 J. Phys. Chem. C 119 17450

    [6]

    Kumar R, Dubey P K, Singh R K, Vaz A R, Moshkalev S A 2016 RSC Adv. 6 17669

    [7]

    Miller D R, Akbar S A, Morris P A 2017 Nano-Micro Lett. 9 33

    [8]

    Gu Y Y, Su Y J, Chen D, Geng H J, Li Z L, Zhang L Y, Zhang Y F 2014 Cryst. Eng. Comm. 16 9185

    [9]

    Tang C M, Liao X Y, Zhong W J, Yu H Y, Liu Z W 2017 RSC Adv. 7 6439

    [10]

    Peng M Z, Zheng X H, Ma Z G, Chen H, Liu S J, He Y F, Li M L 2018 Sens. Actuators, B 256 367

    [11]

    Li Y W, Stoica V A, Sun K, Liu W, Endicott L, Walrath J C, Chang A S, Lin Y H, Pipe K P, Goldman R S, Uher C, Clarke R 2014 Appl. Phys. Lett. 105 201904

    [12]

    Tsivion D, Schvartzman M, Popovitz B R, Huth P V, Joselevich E 2011 Science 333 1003

    [13]

    Lee S A, Hwang J Y, Kim J P, Jeong S Y, Cho C R 2006 Appl. Phys. Lett. 89 182906

    [14]

    Kang B K, Mang S R, Lim H D, Song K M, Song Y H, Go D H, Jung M K, Senthil K, Yoon D H 2014 Mater. Chem. Phys. 147 178

    [15]

    Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001

    [16]

    Jangir R, Porwal S, Tiwari P, Mondal P, Rai S K, Srivastava A K, Bhaumik I, Ganguli T 2016 AIP Adv. 6 035120

    [17]

    Lee S Y, Choi K H, Kang H C 2016 Mater. Lett. 176 213

    [18]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Phys. Mater. C 3 4678

    [19]

    Terasako T, Kawasaki Y, Yagi M 2016 Thin Solid Films 620 23

    [20]

    Smith P A, Nordquist C D, Jackson T N, Mayer T S 2000 Appl. Phys. Lett. 77 1399

    [21]

    Kumar M S, Lee S H, Kim T Y, Kim T H, Song S M, Yang J W, Nahm K S, Suh E K 2003 Solid-State Electron. 47 2075

    [22]

    Zong X, Zhu R 2014 Nanoscale 6 12732

    [23]

    Kumar S, Sarau G, Tessarek C, Bashouti M Y, Hähnel A, Christiansen S, Singh R 2014 J. Phys. D: Appl. Phys. 47 435101

  • [1] 祁祺, 陈海峰. 无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200481
    [2] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [3] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [4] 赵博硕, 强晓永, 秦岳, 胡明. 氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性. 物理学报, 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [5] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长. 物理学报, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [6] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [7] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [8] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列. 物理学报, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [9] 王健雄, 彭景翠, 陈小华, 邓福铭, 吴国涛, 杨杭生, 王淼, 卢筱楠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
    [10] 曾湘波, 王 博, 戴松涛, 廖显伯, 刁宏伟, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [11] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性. 物理学报, 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [12] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [13] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [14] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究. 物理学报, 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [15] 曲家惠, 王 福, 李志杰, 潘学铃, 孙维民. Al3O3N纳米线的制备与表征. 物理学报, 2005, 54(1): 450-453. doi: 10.7498/aps.54.450
    [16] 郑树文, 范广涵, 何苗, 赵灵智. W掺杂对β-Ga2O3导电性能影响的理论研究. 物理学报, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [17] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能. 物理学报, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [18] 马立安, 郑永安, 魏朝晖, 胡利勤, 郭太良. 合成温度和N2/O2流量比对碳纤维衬底上生长的SnO2纳米线形貌及场发射性能影响. 物理学报, 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [19] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [20] 陈丽婕, 刘何燕, 李养贤, 曲静萍, 胡海宁, 陈京兰, 吴光恒. 电化学沉积Fe与FePd纳米线阵列的磁性. 物理学报, 2005, 54(9): 4370-4373. doi: 10.7498/aps.54.4370
  • 引用本文:
    Citation:
计量
  • 文章访问数:  387
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-25
  • 修回日期:  2018-07-19
  • 刊出日期:  2018-11-05

外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究

  • 1. 辽宁师范大学物理与电子技术学院, 大连 116029;
  • 2. 大连理工大学微电子学院, 大连 116024
  • 通信作者: 冯秋菊, qjfeng@dlut.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61574026,11405017)和辽宁省自然科学基金(批准号:201602453)资助的课题.

摘要: 利用外电场辅助化学气相沉积(CVD)方法,在蓝宝石衬底上制备出了由三组生长方向构成的网格状β-Ga2O3纳米线.研究了不同外加电压大小对β-Ga2O3纳米线表面形貌、晶体结构以及光学特性的影响.结果表明:外加电压的大小对样品的表面形貌有着非常大的影响,有外加电场作用时生长的β-Ga2O3纳米线取向性开始变好,只出现了由三组不同生长方向构成的网格状β-Ga2O3纳米线;并且随着外加电压的增加,纳米线分布变得更加密集、长度明显增长.此外,采用这种外电场辅助的CVD方法可以明显改善样品的结晶和光学质量.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回