Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors

Zhang Mao-Lin Ma Wan-Yu Wang Lei Liu Zeng Yang Li-Li Li Shan Tang Wei-Hua Guo Yu-Feng

Citation:

Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors

Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng
PDF
HTML
Get Citation
  • Owing to the high bandgap of up to 4.8 eV, Ga2O3 has a natural advantage in the field of deep-ultraviolet (DUV) detection. The Ga2O3-based photoconductors, Schottky and heterojunction detectors are proposed and show excellent photodetection performance. The Ga2O3 heterojunction detectors are self-driven and feature low power consumption. On the other hand, considering the ultra-wide bandgap and low intrinsic carrier concentration, Ga2O3-based photodetectors are exhibiting important applications in high-temperature photodetection. In this work, a WO3/β-Ga2O3 heterojunction DUV photodetector is constructed and the effect of high temperature on its detection performance is investigated. The β-Ga2O3 films are prepared by metal-organic chemical vapor deposition (MOCVD), and WO3 films and Ti/Au ohmic electrodes are prepared by spin-coating technology and magnetron sputtering technique, respectively. The current-voltage (I-V) and current-time (I-t) measurements are performed at different ambient temperatures. Parameters including light-dark-current ratio (PDCR), responsivity (R), detectivity (D*), and external quantum efficiency (EQE) are extracted to evaluate the deep-ultraviolet detection performance and its high-temperature stability. At room temperature (300 K), the PDCR, the R, the D*, and the EQE of the detector are 3.05×106, 2.7 mA/W, 1.51×1013 Jones, and 1.32%, respectively. As the temperature increases, the dark current of the device increases and the photocurrent decreases, resulting in the degradation of the photodetection performance. To explore the physical mechanism behind the degradation of the detection performance, the effect of temperature on the carrier generation-combination process is investigated. It is found that the Shockley-Read-Hall (SRH) generation-combination mechanism is enhanced with the increase of temperature. Recombination centers are introduced from the crystal defects and interfacial defects, which originate mainly from the SRH process. Specifically, the dark current comes mainly from the depletion region of WO3/β-Ga2O3, and the carrier generation rate in the depletion region is enhanced with temperature increasing, which leads to the rise of dark current. Similarly, the increase of temperature leads to the improvement of the recombination process, therefore the photocurrent decreases at a higher temperature. This effect can also well explain the variation of response time at a high temperature. Overall, it is exhibited that the WO3/β-Ga2O3 heterojunction photodetector can achieve stable self-powered operation even at an ambient temperature of 450 K, indicating that the all-oxide heterojunction detector has potential applications in harsh detection environments.
      Corresponding author: Tang Wei-Hua, whtang@njupt.edu.cn ; Guo Yu-Feng, yfguo@njupt.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3605404), the China Post-Doctoral Science Foundation (Grant No. 2022M721689), the Jiangsu Funding Program for Excellent Post-Doctoral Talent, China, and the National Natural Science Foundation of China (Grant Nos. 61874059, 62204125).
    [1]

    Xu J J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [2]

    Shepelev V A, Altukhov A A, Gladchenkov E V, Popov A V, Teplova T B, Feshchenko V S, Zhukov A O 2017 Russ. Eng. Res. 37 273Google Scholar

    [3]

    Zhao B, Wang F, Chen H Y, Wang Y P, Jiang M M, Fang X S, Zhao D X 2015 Nano Lett. 15 3988Google Scholar

    [4]

    Guo D Y, Guo Q X, Chen Z W, Wu Z P, Li P G, Tang W H 2019 Mater. Today Phys. 11 100157Google Scholar

    [5]

    Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar

    [6]

    Xue H W, He Q M, Jian G Z, Long S B, Pang T, Liu M 2018 Nanoscale Res. Lett. 13 290Google Scholar

    [7]

    Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar

    [8]

    Monroy E, Omnès F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar

    [9]

    Wang S L, Chen K, Zhao H L, He C R, Wu C, Guo D Y, Zhao N, Ungar G, Shen J Q, Chu X L, Li P G, Tang W H 2019 RSC Adv. 9 6064Google Scholar

    [10]

    Jaiswal P, Muazzam UI U, Pratiyush A S, Mohan N, Raghavan S, Muralidharan R, Shivashankar S A, Nath D N 2018 Appl. Phys. Lett. 112 021105Google Scholar

    [11]

    Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z, Muralidharan R, Rajan S, Nath D N 2017 Appl. Phys. Lett. 110 221107Google Scholar

    [12]

    Ruan M M, Song L X, Yang Z, Teng Y, Wang Q S, Wang Y Q 2017 J. Mater. Chem. C 5 7161Google Scholar

    [13]

    Chen S C, Chang T C, Liu P T, Wu Y C, Ko C C, Yang S, Feng L W, Sze S M, Chang C Y, Lien C H 2007 Appl. Phys. Lett. 91 213101Google Scholar

    [14]

    Zhuo R R, Wu D, Wang Y G, Wu E P, Jia C, Shi Z F, Xu T T, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 10982Google Scholar

    [15]

    Zhuo R R, Wang Y G, Wu D, Lou Z H, Shi Z F, Xu T T, Xu J M, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 299Google Scholar

    [16]

    Pintor-Monroy M I, Barrera D, Murillo-Borjas B L, Ochoa-Estrella F J, Hsu J W P, Quevedo-Lopez M A 2018 ACS Appl. Mater. Interfaces 10 38159Google Scholar

    [17]

    Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P, Tang W H 2021 Chin. Phys. B 30 017302Google Scholar

    [18]

    Ma P P, Zheng J, Zhang Y B, Liu X Q, Liu Z, Zuo Y H, Xue C L, Cheng B W 2022 Chin. Phys. B 31 047302Google Scholar

    [19]

    Wang S Q, Cheng N N, Wang H A, Jia Y F, Lu Q, Ning J, Hao Y, Liu X T, Chen H F 2023 Chin. Phys. B 32 048502Google Scholar

    [20]

    Yang C, Liang H W, Zhang Z Z, Xia X C, Zhang H Q, Shen R S, Luo Y M, Du G T 2019 Chin. Phys. B 28 048502Google Scholar

    [21]

    Ma H L, Fan D W 2009 Chin. Phys. Lett. 26 117302Google Scholar

    [22]

    Xiong Z N, Xiu X Q, Li Y W, Hua X M, Xie Z L, Chen P, Liu B, Han P, Zhang R, Zheng Y D 2018 Chin. Phys. Lett. 35 058101Google Scholar

    [23]

    Wang P W, Song Y P, Zhang X Z, Xu J, Yu D P 2008 Chin. Phys. Lett. 25 1038Google Scholar

    [24]

    Liu Z, Tang W 2023 J. Phys. D 56 093002Google Scholar

    [25]

    Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar

    [26]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [27]

    Liu Z, Wang X, Liu Y Y, Guo D Y, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar

    [28]

    Zhou C Q, Ai Q, Chen X, Gao X H, Liu K W, Shen D Z 2019 Chin. Phys. B 28 048503Google Scholar

    [29]

    Sun W M, Sun B Y, Li S, Ma G L, Gao A, Jiang W Y, Zhang M L, Li P G, Liu Z, Tang W H 2022 Chin. Phys. B 31 024205Google Scholar

    [30]

    Xue S B, Zhuang H Z, Xue C S, Hu L J 2006 Chin. Phys. Lett. 23 3055Google Scholar

    [31]

    Xie Z L, Zhang R, Xia C T, Xiu X Q, Han P, Liu B, Zhao H, Jiang R L, Shi Y, Zheng Y D 2008 Chin. Phys. Lett. 25 2185Google Scholar

    [32]

    Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F, Tang W H 2017 J. Mater. Chem. C 5 8688Google Scholar

    [33]

    Luo Z, Zhou H C 2007 IEEE Trans. Instrum. Meas. 56 1877Google Scholar

    [34]

    Galazka Z 2018 Semicond. Sci. Technol. 33 113001Google Scholar

    [35]

    Nakagomi S, Sakai T, Kikuchi K, Kokubun Y 2019 Phys. Status Solidi A 216 1700796Google Scholar

    [36]

    Stubhan T, Li N, Luechinger N A, Halim S C, Matt G J, Brabec C J 2012 Adv. Energy Mater. 2 1433Google Scholar

    [37]

    Choi H, Kim B, Ko M J, Lee D K, Kim H, Kim S H, Kim K 2012 Org. Electron. 13 959Google Scholar

    [38]

    Jing S H, Chen Y C, Ching-Fuh L 2010 IEEE Electron Device Lett. 31 332Google Scholar

    [39]

    Tao C, Ruan S P, Xie G H, Kong X Z, Shen L, Meng F X, Liu C X, Zhang X D, Dong W, Chen W Y 2009 Appl. Phys. Lett. 94 043311Google Scholar

    [40]

    Meyer J, Hamwi S, Schmale S, Winkler T, Johannes H H, Riedl T, Kowalsky W 2009 J. Mater. Chem. 19 702Google Scholar

    [41]

    Meyer J, Hamwi S, Bülow T, Johannes H H, Riedl T, Kowalsky W 2007 Appl. Phys. Lett. 91 113506Google Scholar

    [42]

    Shura M W, Wagener V, Botha J R, Wagener M C 2012 Phys. B Condens. Matter 407 1656Google Scholar

    [43]

    Rose A 1955 Phys. Rev. 97 322Google Scholar

    [44]

    Gui Y H, Yang L L, Tian K, Zhang H H, Fang S M 2019 Sens. Actuators B Chem. 288 104Google Scholar

    [45]

    Lima L V C, Rodriguez M, Freitas V A A, Souza T E, Machado A E H, Patrocínio A O T, Fabris J D, Oliveira L C A, Pereira M C 2015 Appl. Catal. B 165 579Google Scholar

    [46]

    Hill J C, Choi K S 2012 J. Phys. Chem. C 116 7612Google Scholar

    [47]

    Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202a2Google Scholar

    [48]

    Walter C W, Hertzler C F, Devynck P, Smith G P, Peterson J R 1991 J. Chem. Phys. 95 824Google Scholar

    [49]

    Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R, Fornari R 2012 Appl. Phys. Lett. 101 132106Google Scholar

    [50]

    Sun B Y, Sun W M, Li S, Ma G L, Jiang W Y, Yan Z Y, Wang X, An Y H, Li P G, Liu Z, Tang W H 2022 Opt. Commun. 504 127483Google Scholar

    [51]

    Zhao B, Wang F, Chen H Y, Zheng L X, Su L X, Zhao D X, Fang X S 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [52]

    Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L, Shan C X 2018 J. Mater. Chem. C 6 5727Google Scholar

    [53]

    Li S, Zhi Y S, Lu C, Wu C, Yan Z Y, Liu Z, Yang J, Chu X L, Guo D Y, Li P G, Wu Z P, Tang W H 2021 J Phys. Chem. Lett. 12 447Google Scholar

    [54]

    Yu J, Dong L, Peng B, Yuan L, Huang Y, Zhang L, Zhang Y, Jia R 2020 J. Alloys Compd. 821 153532Google Scholar

    [55]

    Yu J G, Yu M, Wang Z, Yuan L, Huang Y, Zhang L C, Zhang Y M, Jia R X 2020 IEEE Trans. Electron Devices 67 3199Google Scholar

    [56]

    Wu C, Qiu L L, Li S, Guo D Y, Li P G, Wang S L, Du P F, Chen Z W, Liu A P, Wang X H, Wu H P, Wu F M, Tang W H 2021 Mater. Today Phys. 17 100335Google Scholar

    [57]

    Schenk A 1992 Solid State Electron. 35 1585Google Scholar

    [58]

    Zhang M L, Ma W Y, Li S, Yang L L, Liu Z, Guo Y F, Tang W H 2023 IEEE Trans. Electron Devices 70 2336Google Scholar

  • 图 1  (a) WO3/β-Ga2O3异质结光电探测器结构示意图; (b) WO3表面的SEM图; (c) WO3表面XPS图; (d), (e) W 4f5/2, W 4f7/2和O 1s的结合能

    Figure 1.  (a) Schematic diagram of WO3/β-Ga2O3 heterojunction PD; (b) SEM image of the WO3 surface; (c) XPS spectrum of the WO3 thin film; (d), (e) binding energies for W 4f5/2, W 4f7/2 and O 1s, respectively.

    图 2  (a) β-Ga2O3薄膜的吸收光谱; (b) WO3薄膜的吸收光谱; (c) WO3/β-Ga2O3异质结光电探测器的响应度光谱

    Figure 2.  (a) UV-vis absorbance spectrum of the β-Ga2O3 film; (b) UV-vis absorbance spectrum of the WO3 film; (c) spectrem responsivity of the WO3/β-Ga2O3 photodetector.

    图 3  (a) 黑暗下的I-V特性; (b) 光照下的I-V特性; (c) WO3/β-Ga2O3异质结能带结构

    Figure 3.  (a) I-V characteristics in the dark; (b) I-V characteristics under illuminations; (c) band structure of WO3/β-Ga2O3 heterojunction.

    图 4  不同温度下WO3/β-Ga2O3异质结光电探测器的性能 (a)光电流和暗电流; (b)光暗电流比; (c)响应度; (d) 外量子效率

    Figure 4.  WO3/β-Ga2O3 heterojunction photodetector at different temperatures: (a) Photocurrent and dark current; (b) photo-to-dark current ratio; (c) responsivity; (d) external quantum efficiency.

    图 5  (a)—(g) WO3/β-Ga2O3异质结光电探测器在不同温度下的I-t特性曲线; (h) 上升与下降时间随温度的变化

    Figure 5.  (a)–(g) I-t curves of the WO3/β-Ga2O3 heterojunction PD with various temperatures; (h) variation of rise and fall times with temperature.

    表 1  不同Ga2O3异质结光电探测器性能比较

    Table 1.  Comparison of performance for several Ga2O3 heterojunction photodetectors.

    PDSelf-poweredUV light/nmPDCRR/(mA·W–1)D/JonesRef.
    MoS2/β-Ga2O3Yes245~1.3×1042.11.21×1011[14]
    ZnO/β-Ga2O3Yes251~1.0×1049.76.29×1012[51]
    Diamond/β-Ga2O3Yes24437.00.26.99×109[52]
    CuI/β-Ga2O3Yes2544.0×1038.56.30×1012[53]
    4H-SiC/β-Ga2O3Yes2541.7×10310.48.80×109[54]
    NiO/Ga2O3Yes254~1.0×1020.31.81×108[55]
    CuCrO2/Ga2O3Yes2543.5×1040.14.70×1011[56]
    WO3/β-Ga2O3Yes2543.5×1062.71.51×1013本文
    DownLoad: CSV
  • [1]

    Xu J J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [2]

    Shepelev V A, Altukhov A A, Gladchenkov E V, Popov A V, Teplova T B, Feshchenko V S, Zhukov A O 2017 Russ. Eng. Res. 37 273Google Scholar

    [3]

    Zhao B, Wang F, Chen H Y, Wang Y P, Jiang M M, Fang X S, Zhao D X 2015 Nano Lett. 15 3988Google Scholar

    [4]

    Guo D Y, Guo Q X, Chen Z W, Wu Z P, Li P G, Tang W H 2019 Mater. Today Phys. 11 100157Google Scholar

    [5]

    Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar

    [6]

    Xue H W, He Q M, Jian G Z, Long S B, Pang T, Liu M 2018 Nanoscale Res. Lett. 13 290Google Scholar

    [7]

    Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar

    [8]

    Monroy E, Omnès F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar

    [9]

    Wang S L, Chen K, Zhao H L, He C R, Wu C, Guo D Y, Zhao N, Ungar G, Shen J Q, Chu X L, Li P G, Tang W H 2019 RSC Adv. 9 6064Google Scholar

    [10]

    Jaiswal P, Muazzam UI U, Pratiyush A S, Mohan N, Raghavan S, Muralidharan R, Shivashankar S A, Nath D N 2018 Appl. Phys. Lett. 112 021105Google Scholar

    [11]

    Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z, Muralidharan R, Rajan S, Nath D N 2017 Appl. Phys. Lett. 110 221107Google Scholar

    [12]

    Ruan M M, Song L X, Yang Z, Teng Y, Wang Q S, Wang Y Q 2017 J. Mater. Chem. C 5 7161Google Scholar

    [13]

    Chen S C, Chang T C, Liu P T, Wu Y C, Ko C C, Yang S, Feng L W, Sze S M, Chang C Y, Lien C H 2007 Appl. Phys. Lett. 91 213101Google Scholar

    [14]

    Zhuo R R, Wu D, Wang Y G, Wu E P, Jia C, Shi Z F, Xu T T, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 10982Google Scholar

    [15]

    Zhuo R R, Wang Y G, Wu D, Lou Z H, Shi Z F, Xu T T, Xu J M, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 299Google Scholar

    [16]

    Pintor-Monroy M I, Barrera D, Murillo-Borjas B L, Ochoa-Estrella F J, Hsu J W P, Quevedo-Lopez M A 2018 ACS Appl. Mater. Interfaces 10 38159Google Scholar

    [17]

    Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P, Tang W H 2021 Chin. Phys. B 30 017302Google Scholar

    [18]

    Ma P P, Zheng J, Zhang Y B, Liu X Q, Liu Z, Zuo Y H, Xue C L, Cheng B W 2022 Chin. Phys. B 31 047302Google Scholar

    [19]

    Wang S Q, Cheng N N, Wang H A, Jia Y F, Lu Q, Ning J, Hao Y, Liu X T, Chen H F 2023 Chin. Phys. B 32 048502Google Scholar

    [20]

    Yang C, Liang H W, Zhang Z Z, Xia X C, Zhang H Q, Shen R S, Luo Y M, Du G T 2019 Chin. Phys. B 28 048502Google Scholar

    [21]

    Ma H L, Fan D W 2009 Chin. Phys. Lett. 26 117302Google Scholar

    [22]

    Xiong Z N, Xiu X Q, Li Y W, Hua X M, Xie Z L, Chen P, Liu B, Han P, Zhang R, Zheng Y D 2018 Chin. Phys. Lett. 35 058101Google Scholar

    [23]

    Wang P W, Song Y P, Zhang X Z, Xu J, Yu D P 2008 Chin. Phys. Lett. 25 1038Google Scholar

    [24]

    Liu Z, Tang W 2023 J. Phys. D 56 093002Google Scholar

    [25]

    Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar

    [26]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [27]

    Liu Z, Wang X, Liu Y Y, Guo D Y, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar

    [28]

    Zhou C Q, Ai Q, Chen X, Gao X H, Liu K W, Shen D Z 2019 Chin. Phys. B 28 048503Google Scholar

    [29]

    Sun W M, Sun B Y, Li S, Ma G L, Gao A, Jiang W Y, Zhang M L, Li P G, Liu Z, Tang W H 2022 Chin. Phys. B 31 024205Google Scholar

    [30]

    Xue S B, Zhuang H Z, Xue C S, Hu L J 2006 Chin. Phys. Lett. 23 3055Google Scholar

    [31]

    Xie Z L, Zhang R, Xia C T, Xiu X Q, Han P, Liu B, Zhao H, Jiang R L, Shi Y, Zheng Y D 2008 Chin. Phys. Lett. 25 2185Google Scholar

    [32]

    Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F, Tang W H 2017 J. Mater. Chem. C 5 8688Google Scholar

    [33]

    Luo Z, Zhou H C 2007 IEEE Trans. Instrum. Meas. 56 1877Google Scholar

    [34]

    Galazka Z 2018 Semicond. Sci. Technol. 33 113001Google Scholar

    [35]

    Nakagomi S, Sakai T, Kikuchi K, Kokubun Y 2019 Phys. Status Solidi A 216 1700796Google Scholar

    [36]

    Stubhan T, Li N, Luechinger N A, Halim S C, Matt G J, Brabec C J 2012 Adv. Energy Mater. 2 1433Google Scholar

    [37]

    Choi H, Kim B, Ko M J, Lee D K, Kim H, Kim S H, Kim K 2012 Org. Electron. 13 959Google Scholar

    [38]

    Jing S H, Chen Y C, Ching-Fuh L 2010 IEEE Electron Device Lett. 31 332Google Scholar

    [39]

    Tao C, Ruan S P, Xie G H, Kong X Z, Shen L, Meng F X, Liu C X, Zhang X D, Dong W, Chen W Y 2009 Appl. Phys. Lett. 94 043311Google Scholar

    [40]

    Meyer J, Hamwi S, Schmale S, Winkler T, Johannes H H, Riedl T, Kowalsky W 2009 J. Mater. Chem. 19 702Google Scholar

    [41]

    Meyer J, Hamwi S, Bülow T, Johannes H H, Riedl T, Kowalsky W 2007 Appl. Phys. Lett. 91 113506Google Scholar

    [42]

    Shura M W, Wagener V, Botha J R, Wagener M C 2012 Phys. B Condens. Matter 407 1656Google Scholar

    [43]

    Rose A 1955 Phys. Rev. 97 322Google Scholar

    [44]

    Gui Y H, Yang L L, Tian K, Zhang H H, Fang S M 2019 Sens. Actuators B Chem. 288 104Google Scholar

    [45]

    Lima L V C, Rodriguez M, Freitas V A A, Souza T E, Machado A E H, Patrocínio A O T, Fabris J D, Oliveira L C A, Pereira M C 2015 Appl. Catal. B 165 579Google Scholar

    [46]

    Hill J C, Choi K S 2012 J. Phys. Chem. C 116 7612Google Scholar

    [47]

    Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202a2Google Scholar

    [48]

    Walter C W, Hertzler C F, Devynck P, Smith G P, Peterson J R 1991 J. Chem. Phys. 95 824Google Scholar

    [49]

    Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R, Fornari R 2012 Appl. Phys. Lett. 101 132106Google Scholar

    [50]

    Sun B Y, Sun W M, Li S, Ma G L, Jiang W Y, Yan Z Y, Wang X, An Y H, Li P G, Liu Z, Tang W H 2022 Opt. Commun. 504 127483Google Scholar

    [51]

    Zhao B, Wang F, Chen H Y, Zheng L X, Su L X, Zhao D X, Fang X S 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [52]

    Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L, Shan C X 2018 J. Mater. Chem. C 6 5727Google Scholar

    [53]

    Li S, Zhi Y S, Lu C, Wu C, Yan Z Y, Liu Z, Yang J, Chu X L, Guo D Y, Li P G, Wu Z P, Tang W H 2021 J Phys. Chem. Lett. 12 447Google Scholar

    [54]

    Yu J, Dong L, Peng B, Yuan L, Huang Y, Zhang L, Zhang Y, Jia R 2020 J. Alloys Compd. 821 153532Google Scholar

    [55]

    Yu J G, Yu M, Wang Z, Yuan L, Huang Y, Zhang L C, Zhang Y M, Jia R X 2020 IEEE Trans. Electron Devices 67 3199Google Scholar

    [56]

    Wu C, Qiu L L, Li S, Guo D Y, Li P G, Wang S L, Du P F, Chen Z W, Liu A P, Wang X H, Wu H P, Wu F M, Tang W H 2021 Mater. Today Phys. 17 100335Google Scholar

    [57]

    Schenk A 1992 Solid State Electron. 35 1585Google Scholar

    [58]

    Zhang M L, Ma W Y, Li S, Yang L L, Liu Z, Guo Y F, Tang W H 2023 IEEE Trans. Electron Devices 70 2336Google Scholar

  • [1] Wang Wei, Li Jin-Yang, Mao Guo-Pei, Yang Yan, Gao Zhi-Qiang, Ma Cong, Zhong Xiang-Yu, Shi Qing. Optical fiber high-temperature pressure sensor with weak temperature sensitivity. Acta Physica Sinica, 2024, 73(1): 014208. doi: 10.7498/aps.73.20231155
    [2] Li Lei, Zhi Yu-Song, Zhang Mao-Lin, Liu Zeng, Zhang Shao-Hui, Ma Wan-Yu, Xu Qiang, Shen Gao-Hui, Wang Xia, Guo Yu-Feng, Tang Wei-Hua. Dual-band and dual-mode ultraviolet photodetection characterizations of Ga2O3/Al0.1Ga0.9N homo-type heterojunction. Acta Physica Sinica, 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [3] Wang Lu-Xuan, Liu Yi-Tong, Shi Fang-Yuan, Qi Xian-Wen, Shen Han, Song Ying-Lin, Fang Yu. Broadband ultrafast photogenerated carrier dynamics induced by intrinsic defects in $\boldsymbol\beta$-Ga2O3. Acta Physica Sinica, 2023, 72(21): 214202. doi: 10.7498/aps.72.20231173
    [4] Li Zhi-Qiang, Tan Xiao-Yu, Duan Xin-Lei, Zhang Jing-Yi, Yang Jia-Yue. Deep learning molecular dynamics simulation on microwave high-temperature dielectric function of silicon nitride. Acta Physica Sinica, 2022, 71(24): 247803. doi: 10.7498/aps.71.20221002
    [5] Li Ming-Zhu, Cai Xiao-Wu, Zeng Chuan-Bin, Li Xiao-Jing, Li Duo-Li, Ni Tao, Wang Juan-Juan, Han Zheng-Sheng, Zhao Fa-Zhan. Effect of high-temperature on holding characteristics in MOSFET ESD protecting device. Acta Physica Sinica, 2022, 71(12): 128501. doi: 10.7498/aps.71.20220172
    [6] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [7] Dong Jiu-Feng, Deng Xing-Lei, Niu Yu-Juan, Pan Zi-Zhao, Wang Hong. Research progress of polymer based dielectrics for high-temperature capacitor energy storage. Acta Physica Sinica, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [8] Qi Qi, Chen Hai-Feng, Hong Zi-fan, Liu Ying-Ying, Guo Li-Xin, Li Li-Jun, Lu Qin, Jia Yi-Fan. Preparation and characteristics of ultra-wide Ga2O3 nanoribbons up to millimeter-long level without catalyst. Acta Physica Sinica, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [9] Hong Zi-Fan, Chen Hai-Feng, Jia Yi-Fan, Qi Qi, Liu Ying-Ying, Guo Li-Xin, Liu Xiang-Tai, Lu Qin, Li Li-Jun, Wang Shao-Qing, Guan Yun-He, Hu Qi-Ren. Characteristics of Ga2O3 epitaxial films on seed layer grown by magnetron sputtering. Acta Physica Sinica, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [10] Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang. Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials. Acta Physica Sinica, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [11] Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei. High-pressure structure prediction and high-temperature structural stability of periclase. Acta Physica Sinica, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [12] Li Dong-Ke, He Bing-Yan, Chen Kun-Quan, Pi Ming-Yu, Cui Yu-Ting, Zhang Ding-Ke. Xylene gas sensing performance of Au nanoparticlesloaded WO3 nanoflowers. Acta Physica Sinica, 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [13] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [14] Zhang Xing, Zhang Yi, Zhang Jian-Wei, Zhang Jian, Zhong Chu-Yu, Huang You-Wen, Ning Yong-Qiang, Gu Si-Hong, Wang Li-Jun. 894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system. Acta Physica Sinica, 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [15] Gao Ying-Jun, Qin He-Lin, Zhou Wen-Quan, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao. Phase field crystal simulation of grain boundary annihilation under strain strain at high temperature. Acta Physica Sinica, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [16] Han Yong, Long Xin-Ping, Guo Xiang-Li. Prediction of methane PVT relations at high temperatures by a simplified virial equation of state. Acta Physica Sinica, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [17] Zheng Shu-Wen, Fan Guang-Han, He Miao, Zhao Ling-Zhi. Theoretical study of the effect of W-doping on the conductivity of β-Ga2O3. Acta Physica Sinica, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [18] Song Yun-Fei, Yu Guo-Yang, Yin He-Dong, Zhang Ming-Fu, Liu Yu-Qiang, Yang Yan-Qiang. Temperature dependence of elastic modulus of single crystal sapphire investigated by laser ultrasonic. Acta Physica Sinica, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [19] Wang Li-Hong, You Jing-Lin, Wang Yuan-Yuan, Zheng Shao-Bo, Simon Patrick, Hou Min, Ji Zi-Fang. Temperature dependent Raman spectra and micro-structure study of hexagonal MgTiO3 crystal. Acta Physica Sinica, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [20] Song Xiao-Shu, Cheng Xin-Lu, Yang Xiang-Dong, Linghu Rong-Feng. Line intensities of 3000—0200 and 1001—0110 transition bands of 14N216O at high temperature. Acta Physica Sinica, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
Metrics
  • Abstract views:  2493
  • PDF Downloads:  137
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2023
  • Accepted Date:  05 June 2023
  • Available Online:  20 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回