搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

$\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学

王露璇 刘奕彤 史方圆 祁纤雯 沈涵 宋瑛林 方宇

引用本文:
Citation:

$\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学

王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇

Broadband ultrafast photogenerated carrier dynamics induced by intrinsic defects in $\boldsymbol\beta$-Ga2O3

Wang Lu-Xuan, Liu Yi-Tong, Shi Fang-Yuan, Qi Xian-Wen, Shen Han, Song Ying-Lin, Fang Yu
PDF
HTML
导出引用
  • 利用超快瞬态吸收光谱, 针对氧化镓(β-Ga2O3)晶体中本征缺陷诱导的载流子俘获和复合等动力学进行研究. 实验发现, 由本征缺陷诱导的宽带吸收光谱具有很强的偏振依赖性, 特别是从不同探测偏振下的瞬态吸收光谱中可以提取出两个缺陷态吸收响应. 该缺陷诱导的吸收响应归因于从价带到本征缺陷(镓空位)不同电荷态的光学跃迁, 利用基于单缺陷的多能级载流子俘获模型拟合得到缺陷俘获空穴的速率远快于俘获电子, 且缺陷态的吸收截面相较于自由载流子吸收截面大至少一个数量级. 本文的研究结果不仅能明确本征缺陷与光生载流子动力学之间的关系, 而且为β-Ga2O3在超快宽带光电子器件中的应用提供科学指导.
    The ultra-wide bandgap semiconductor gallium oxide β-Ga2O3 with enhanced resistance to the irradiation and temperature is favorable for high-power and high-temperature optoelectronic devices. β-Ga2O3 also exhibits great potential applications in the field of integrated photonics because of its compatibility with the CMOS technique. However, a variety of intrinsic and extrinsic defects and trap states coexist in β-Ga2O3, including vacancies, interstitials, and impurity atoms. The defect-related carrier dynamics in β-Ga2O3 not only adversely affect the optical and electrical properties, but also directly limit the performance of β-Ga2O3 based devices. Therefore, a comprehensive understanding of the carrier transportation and relaxation dynamics induced by intrinsic defects is very important. Supercontinuum-probe spectroscopy can provide a fruitful information about the carrier relaxation processes in different recombination mechanisms, and thus becomes an effective way to study the defect dynamics. In this work, we study the dynamics of carrier trapping and recombination induced by intrinsic defects in pristine β-Ga2O3 crystal by using wavelength-tunable ultrafast transient absorption spectroscopy. The broadband absorption spectra induced by the intrinsic defects are strongly dependent on the polarization of pump pulse and probe pulse. Particularly, two absorption peaks induced by the two defect states can be extracted from the transient absorption spectra by subtracting the absorption transients under two probe polarizations. The observed defect-induced absorption features are attributed to the optical transitions from the valence band to the different charge states of the intrinsic defects (such as gallium vacancy). The data are well explained by a proposed carrier capture model based on multi-level energies. Moreover, the hole capture rate is found to be much greater than that of the electron, and the absorption cross-section of the defect state is at least 10 times larger than that of free carrier. Our findings not only clarify the relationship between intrinsic defects and photogenerated carrier dynamics, but also show the importance in the application of β-Ga2O3 crystals in ultrafast and broadband photonics.
      通信作者: 方宇, yufang@usts.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11704273)、江苏省自然科学研究基金(批准号: BK20221384)、“十四五”江苏省重点学科(批准号: 2021135)、江苏省研究生科研与实践创新计划(批准号: KYCX22_3267)和苏州科技大学大学生创新创业训练计划(批准号: 202310332270X, 2022011002X)资助的课题.
      Corresponding author: Fang Yu, yufang@usts.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11704273), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20221384), the Jiangsu Key Disciplines of the Fourteenth Five-Year Plan, China (Grant No. 2021135), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX22_3267), and the Undergraduate Training Programs for Innovation and Entrepreneurship of Suzhou University of Science and Technology, China (Grant Nos. 202310332270X, 2022011002X).
    [1]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [2]

    Higashiwaki M, Kaplar R, Pernot J, Zhao H P 2021 Appl. Phys. Lett. 118 200401Google Scholar

    [3]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2012 Appl. Phys. Lett. 100 013504Google Scholar

    [4]

    Chen X H, Ren F F, Gu S L, Ye 2019 Photonics Res. 7 381Google Scholar

    [5]

    Guo D Y, Guo Q, Chen Z, Wu Z, Li P, Tang W H 2019 Mater. Today Phys. 11 100157Google Scholar

    [6]

    Tadjer M J, Lyons J L, Nepal N, Freitas Jr J A, Koehler A D, Foster G M 2019 ECS J. Solid State Sci. Technol. 8 Q3187Google Scholar

    [7]

    McCluskey M D 2020 J. Appl. Phys. 127 101101Google Scholar

    [8]

    Zhang J, Shi J, Qi D C, Chen L, Zhang K H L 2020 APL Mater. 8 020906Google Scholar

    [9]

    Koksal Q, Tanen N, Jena D, Xing H G, Rana F 2018 Appl. Phys. Lett. 113 252102Google Scholar

    [10]

    Varley J B, Weber J R, Janotti A, Van de Walle C G 2010 Appl. Phys. Lett. 97 142106Google Scholar

    [11]

    Kananen B E, Halliburton L E, Scherrer E M, et al. 2017 Appl. Phys. Lett. 111 072102Google Scholar

    [12]

    Feng Z, Bhuiyan A F M, Kalarickal N K, Rajan S, Zhao H 2020 Appl. Phys. Lett. 117 222106Google Scholar

    [13]

    Sun Y F, Li Z G, Fang Y, Wu X Z, Zhou W F, Jia Z T, Yang J Y, Song Y L 2022 Appl. Phys. Lett. 120 032101Google Scholar

    [14]

    Zhang Z, Farzana E, Arehart A R, Ringel S A 2016 Appl. Phys. Lett. 108 052105Google Scholar

    [15]

    Islam M M, Rana D, Hernandez A, Haseman M, Selim F A 2019 J. Appl. Phys. 125 055701Google Scholar

    [16]

    Islam M M, Adhikari N, Hernandez A, et al. 2020 J. Appl. Phys. 127 145701Google Scholar

    [17]

    Yamaoka S, Furukawa Y, Nakayama M 2017 Phys. Rev. B 95 094304Google Scholar

    [18]

    Gao H, Muralidharan S, Pronin N, et al. 2018 Appl. Phys. Lett. 112 242102Google Scholar

    [19]

    Skachkov W R L, Lambrecht H J, von Bardeleben U 2019 J. Appl. Phys. 125 185701Google Scholar

    [20]

    Montes J, Kopas C, Chen H, et al. 2020 J. Appl. Phys. 128 205701Google Scholar

    [21]

    Othonos A, Zervos M, Christofides C 2010 J. Appl. Phys. 108 124302Google Scholar

    [22]

    Singh A, Koksal O, Tanen N, McCandless J, Jena D, Xing H G, Peelaers H, Rana F 2021 Phys. Rev. Res. 3 023154Google Scholar

    [23]

    Cho J B, Jung G, Kim K, Kim J, Hong S K, Song J H, Jang J I 2021 J. Phys. Chem. C 125 1432Google Scholar

    [24]

    方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林 2020 物理学报 69 168701Google Scholar

    Fang Y, Wu X Z, Chen Y Q, Yang J Y, Song Y L 2020 Acta Phys. Sin. 69 168701Google Scholar

    [25]

    Fang Y, Wu X Z, Yang J Y, Wang J P, Wu Q Y, Song Y L 2021 Appl. Phys. Lett. 118 112105Google Scholar

    [26]

    Fang Y, Yang J Y, Yang Y, Wu X Z, Xiao Z G, Zhou F, Song Y L 2015 Journal of Phys. D: Appl. Phys. 49 045105Google Scholar

    [27]

    王建苹, 吴幸智, 杨俊义, 陈永强, 吴泉英, 宋瑛林, 方宇 2022 光学学报 42 2219001Google Scholar

    Wang J P, Wu X Z, Yang J Y, Chen Y Q, Wu Q Y, Song Y L, Fang Y 2022 Acta Opt. Sin. 42 2219001Google Scholar

    [28]

    Singh A, Koksal O, Tanen N, McCandless J, Jena D, Xing H L, Peelaers H, Rana F 2020 Appl. Phys. Lett. 117 072103Google Scholar

    [29]

    Chen H, Fu H, Huang X, Montes J A, Yang T H, Baranowski I, Zhao Y 2018 Opt. Express 26 3938Google Scholar

    [30]

    Sun Y F, Fang Y, Li Z G, Yang J Y, Zhou W F, Liu K, Song Y L 2021 J. Phys. D: Appl. Phys. 54 495105Google Scholar

    [31]

    Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S 2016 J. Appl. Phys. 55 1202A2Google Scholar

    [32]

    Luchechko A, Vasyltsiv V, Zhydachevskyy Y, et al. 2020 J. Phys. D: Appl. Phys. 53 354001Google Scholar

    [33]

    Galazka Z, Ganschow S, Fiedler A, et al. 2018 J. Cryst. Growth 486 82Google Scholar

    [34]

    Peelaers H, Van de Walle C G 2019 Phys. Rev. B 100 081202Google Scholar

    [35]

    Varley J B, Peelaers H, Janotti A, Van de Walle C G 2011 J. Phys. Condens. Matter 23 334212Google Scholar

    [36]

    Deák P, Ho Q D, Seemann F, Aradi B, Lorke M, Frauenheim T 2017 Phys. Rev. B 95 075208Google Scholar

    [37]

    Ingebrigtsen M E, Kuznetsov A Y, Svensson B G, Alfieri G, Mihaila A, Badstübner U, Perron A, Vines L, Varley J B 2019 APL Mater. 7 022510Google Scholar

    [38]

    Johnson J M, Chen Z, Varley J B, et al. 2019 Phys. Rev. X 9 041027Google Scholar

    [39]

    Nie Y Y, Jiao S J, Li S F, et al. 2022 J. Alloys Compd. 900 163431Google Scholar

    [40]

    Farzana E, Ahmadi E, Speck J S, Arehart A R, Ringel S A 2018 J. Appl. Phys. 123 161410Google Scholar

    [41]

    Zimmermann C, Rønning V, Frodason Y K, Bobal V, Vines L, Varley J B 2020 Phys. Rev. Mater. 4 074605Google Scholar

    [42]

    Fang Y, Wu X Z, Yang J Y, Xiao Z G, Yang Y, Zhou F, Song Y L 2015 Appl. Phys. Lett. 107 051901Google Scholar

    [43]

    Ščajev P, Jarašiūnas K, Leach J 2020 J. Appl. Phys. 127 245705Google Scholar

    [44]

    Reshchikov M A, Vorobiov M, Demchenko D O, et al. 2018 Phys. Rev. B 98 125207Google Scholar

  • 图 1  (a) UID和Sn掺杂β-Ga2O3的透射光谱, 箭头表示泵浦光波长; (b)不同入射光强下β-Ga2O3的开孔Z扫描曲线, 实线为理论拟合曲线

    Fig. 1.  (a) Optical transmission spectra of UID and Sn-doped β-Ga2O3, where the arrow denotes the pump wavelength; (b) open-aperture Z-scan data of β-Ga2O3 at different incident light intensities, where the solid lines are theoretical fitting curves.

    图 2  在不同的延迟时间下, 沿(a) [010]和(b) [102]晶轴探测下UID β-Ga2O3晶体的瞬态吸收光谱; 沿(c) [010]和(d) [102]轴探测下提取的不同波长吸收衰减动力学. 泵浦脉冲固定为沿[102]轴偏振

    Fig. 2.  Transient absorption spectra of the UID β-Ga2O3 crystal probed at different delay times for different probe polarizations with respect to the (a) [010] and (b) [102] crystal axes. Extracted decay dynamics of absorption under different probe wavelengths for probe polarization along the (c) [010] and (d) [102] axes. The pump pulse is fixed to be polarized along the [102] axis.

    图 3  td = 2 ps处沿(a) [010]和(b) [102]晶轴探测偏振下的缺陷吸收光谱(数据点); (c)两个探测偏振方向的差分瞬态吸收ΔmOD*. 所有的缺陷吸收光谱都可以用两个高斯函数(虚线)进行拟合

    Fig. 3.  Defect absorption spectra (dots) as a function of probe photon energy for polarization along the (a) [010] and (b) [102] crystal axes at td = 2 ps; (c) the difference transients ΔmOD* between two probe polarization directions. All the defect absorption spectra can be fitted using two Gaussian functions (dashed lines).

    图 4  双光子激发(2PE)载流子俘获和本征缺陷吸收图, VGa相关缺陷的多电荷态($ {2{\rm{V}}}_{{\rm{G}}{\rm{a}}}^{1}{\text{-}}{{\rm{G}}{\rm{a}}}_{{\rm{i}}}^{{\rm{c}}} $)可以被泵浦脉冲激发并允许载流子俘获和光学跃迁(探测脉冲所经历的瞬态吸收)

    Fig. 4.  Diagram of two-photon excited (2PE) carrier capture and the intrinsic defect absorption, the multiple charge states of the VGa-related defects ($ {2{\rm{V}}}_{{\rm{G}}{\rm{a}}}^{1}{\text{-}}{{\rm{G}}{\rm{a}}}_{{\rm{i}}}^{{\rm{c}}} $ is for consideration) can be excited by pump pulses and allow carrier trapping (black arrows) and optical transitions (transient absorption experienced by the probe pulses).

    图 5  (a)—(c)泵浦光沿[102]轴偏振时, 测量和拟合得到的不同探测偏振和波长下UID β-Ga2O3的吸收动力学

    Fig. 5.  (a)–(c) Measured and computed absorption kinetics in UID β-Ga2O3 for different probe polarizations and wavelengths when pumped along the [102] axis.

    表 1  提取的瞬态吸收动力学模型参数

    Table 1.  Extracted parameters to model the transient absorption kinetics.

    参数 数值
    Nd/cm3 (1.7±0.2)×1016
    $C_{\text{p}}^{ - 2}$/(cm3·s) (1.6±0.3)×10–6
    $C_{\text{p}}^{ - 1}$/(cm3·s) (1.3±0.2)×10–6
    σ–1 |max// [010]/cm2 (1.4±0.4)×10–17
    σ–1 |max// [102]/cm2 (2.3±0.5)×10–17
    σ0 |max// [102]/cm2 (2.2±0.6)×10–17
    下载: 导出CSV
  • [1]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [2]

    Higashiwaki M, Kaplar R, Pernot J, Zhao H P 2021 Appl. Phys. Lett. 118 200401Google Scholar

    [3]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2012 Appl. Phys. Lett. 100 013504Google Scholar

    [4]

    Chen X H, Ren F F, Gu S L, Ye 2019 Photonics Res. 7 381Google Scholar

    [5]

    Guo D Y, Guo Q, Chen Z, Wu Z, Li P, Tang W H 2019 Mater. Today Phys. 11 100157Google Scholar

    [6]

    Tadjer M J, Lyons J L, Nepal N, Freitas Jr J A, Koehler A D, Foster G M 2019 ECS J. Solid State Sci. Technol. 8 Q3187Google Scholar

    [7]

    McCluskey M D 2020 J. Appl. Phys. 127 101101Google Scholar

    [8]

    Zhang J, Shi J, Qi D C, Chen L, Zhang K H L 2020 APL Mater. 8 020906Google Scholar

    [9]

    Koksal Q, Tanen N, Jena D, Xing H G, Rana F 2018 Appl. Phys. Lett. 113 252102Google Scholar

    [10]

    Varley J B, Weber J R, Janotti A, Van de Walle C G 2010 Appl. Phys. Lett. 97 142106Google Scholar

    [11]

    Kananen B E, Halliburton L E, Scherrer E M, et al. 2017 Appl. Phys. Lett. 111 072102Google Scholar

    [12]

    Feng Z, Bhuiyan A F M, Kalarickal N K, Rajan S, Zhao H 2020 Appl. Phys. Lett. 117 222106Google Scholar

    [13]

    Sun Y F, Li Z G, Fang Y, Wu X Z, Zhou W F, Jia Z T, Yang J Y, Song Y L 2022 Appl. Phys. Lett. 120 032101Google Scholar

    [14]

    Zhang Z, Farzana E, Arehart A R, Ringel S A 2016 Appl. Phys. Lett. 108 052105Google Scholar

    [15]

    Islam M M, Rana D, Hernandez A, Haseman M, Selim F A 2019 J. Appl. Phys. 125 055701Google Scholar

    [16]

    Islam M M, Adhikari N, Hernandez A, et al. 2020 J. Appl. Phys. 127 145701Google Scholar

    [17]

    Yamaoka S, Furukawa Y, Nakayama M 2017 Phys. Rev. B 95 094304Google Scholar

    [18]

    Gao H, Muralidharan S, Pronin N, et al. 2018 Appl. Phys. Lett. 112 242102Google Scholar

    [19]

    Skachkov W R L, Lambrecht H J, von Bardeleben U 2019 J. Appl. Phys. 125 185701Google Scholar

    [20]

    Montes J, Kopas C, Chen H, et al. 2020 J. Appl. Phys. 128 205701Google Scholar

    [21]

    Othonos A, Zervos M, Christofides C 2010 J. Appl. Phys. 108 124302Google Scholar

    [22]

    Singh A, Koksal O, Tanen N, McCandless J, Jena D, Xing H G, Peelaers H, Rana F 2021 Phys. Rev. Res. 3 023154Google Scholar

    [23]

    Cho J B, Jung G, Kim K, Kim J, Hong S K, Song J H, Jang J I 2021 J. Phys. Chem. C 125 1432Google Scholar

    [24]

    方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林 2020 物理学报 69 168701Google Scholar

    Fang Y, Wu X Z, Chen Y Q, Yang J Y, Song Y L 2020 Acta Phys. Sin. 69 168701Google Scholar

    [25]

    Fang Y, Wu X Z, Yang J Y, Wang J P, Wu Q Y, Song Y L 2021 Appl. Phys. Lett. 118 112105Google Scholar

    [26]

    Fang Y, Yang J Y, Yang Y, Wu X Z, Xiao Z G, Zhou F, Song Y L 2015 Journal of Phys. D: Appl. Phys. 49 045105Google Scholar

    [27]

    王建苹, 吴幸智, 杨俊义, 陈永强, 吴泉英, 宋瑛林, 方宇 2022 光学学报 42 2219001Google Scholar

    Wang J P, Wu X Z, Yang J Y, Chen Y Q, Wu Q Y, Song Y L, Fang Y 2022 Acta Opt. Sin. 42 2219001Google Scholar

    [28]

    Singh A, Koksal O, Tanen N, McCandless J, Jena D, Xing H L, Peelaers H, Rana F 2020 Appl. Phys. Lett. 117 072103Google Scholar

    [29]

    Chen H, Fu H, Huang X, Montes J A, Yang T H, Baranowski I, Zhao Y 2018 Opt. Express 26 3938Google Scholar

    [30]

    Sun Y F, Fang Y, Li Z G, Yang J Y, Zhou W F, Liu K, Song Y L 2021 J. Phys. D: Appl. Phys. 54 495105Google Scholar

    [31]

    Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S 2016 J. Appl. Phys. 55 1202A2Google Scholar

    [32]

    Luchechko A, Vasyltsiv V, Zhydachevskyy Y, et al. 2020 J. Phys. D: Appl. Phys. 53 354001Google Scholar

    [33]

    Galazka Z, Ganschow S, Fiedler A, et al. 2018 J. Cryst. Growth 486 82Google Scholar

    [34]

    Peelaers H, Van de Walle C G 2019 Phys. Rev. B 100 081202Google Scholar

    [35]

    Varley J B, Peelaers H, Janotti A, Van de Walle C G 2011 J. Phys. Condens. Matter 23 334212Google Scholar

    [36]

    Deák P, Ho Q D, Seemann F, Aradi B, Lorke M, Frauenheim T 2017 Phys. Rev. B 95 075208Google Scholar

    [37]

    Ingebrigtsen M E, Kuznetsov A Y, Svensson B G, Alfieri G, Mihaila A, Badstübner U, Perron A, Vines L, Varley J B 2019 APL Mater. 7 022510Google Scholar

    [38]

    Johnson J M, Chen Z, Varley J B, et al. 2019 Phys. Rev. X 9 041027Google Scholar

    [39]

    Nie Y Y, Jiao S J, Li S F, et al. 2022 J. Alloys Compd. 900 163431Google Scholar

    [40]

    Farzana E, Ahmadi E, Speck J S, Arehart A R, Ringel S A 2018 J. Appl. Phys. 123 161410Google Scholar

    [41]

    Zimmermann C, Rønning V, Frodason Y K, Bobal V, Vines L, Varley J B 2020 Phys. Rev. Mater. 4 074605Google Scholar

    [42]

    Fang Y, Wu X Z, Yang J Y, Xiao Z G, Yang Y, Zhou F, Song Y L 2015 Appl. Phys. Lett. 107 051901Google Scholar

    [43]

    Ščajev P, Jarašiūnas K, Leach J 2020 J. Appl. Phys. 127 245705Google Scholar

    [44]

    Reshchikov M A, Vorobiov M, Demchenko D O, et al. 2018 Phys. Rev. B 98 125207Google Scholar

  • [1] 王斐, 杨振清, 夏雨虹, 刘畅, 林春丹. Ge/Sn合金化对CsPbBr3钙钛矿热载流子弛豫影响的非绝热分子动力学研究. 物理学报, 2024, 73(2): 028801. doi: 10.7498/aps.73.20231061
    [2] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟. Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能. 物理学报, 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [3] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制. 物理学报, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [4] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [5] 沈环, 华林强, 魏政荣. 尿嘧啶激发态动力学溶剂效应的飞秒瞬态吸收光谱研究. 物理学报, 2022, 71(18): 184206. doi: 10.7498/aps.71.20220515
    [6] 黄昊, 牛奔, 陶婷婷, 罗世平, 王颖, 赵晓辉, 王凯, 李志强, 党伟. Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析. 物理学报, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [7] 李秀华, 张敏. 薄膜厚度对射频磁控溅射β-Ga2O3薄膜光电性能的影响*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211744
    [8] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [9] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [10] 祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡. 无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性. 物理学报, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [11] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [12] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [13] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [14] 方少寅, 陆海铭, 赖天树. 自旋极化度对GaAs量子阱中吸收饱和效应与载流子复合动力学的影响研究. 物理学报, 2015, 64(15): 157201. doi: 10.7498/aps.64.157201
    [15] 郑树文, 范广涵, 何苗, 赵灵智. W掺杂对β-Ga2O3导电性能影响的理论研究. 物理学报, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [16] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [17] 左方圆, 王阳, 吴谊群, 赖天树. Ge2Sb2Te5非晶薄膜中超快载流子动力学的飞秒分辨反射光谱研究. 物理学报, 2009, 58(10): 7250-7254. doi: 10.7498/aps.58.7250
    [18] 林琼斐, 夏海平, 王金浩, 张约品, 张勤远. Ga2O3组分对Tm3+掺杂GeO2-Ga2O3-Li2O-BaO-La2O3玻璃的光谱性能影响. 物理学报, 2008, 57(4): 2554-2561. doi: 10.7498/aps.57.2554
    [19] 王天民, 顾强, 邢志强. Cu3Au与Au3Cu中点缺陷的分子动力学研究——兼论L12型合金点缺陷的性质. 物理学报, 1997, 46(1): 101-108. doi: 10.7498/aps.46.101
    [20] 傅春寅, 鲁永令, 曾树荣. 自由多子尾区俘获动力学及多子俘获截面的测量. 物理学报, 1988, 37(3): 485-489. doi: 10.7498/aps.37.485
计量
  • 文章访问数:  1820
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 修回日期:  2023-08-16
  • 上网日期:  2023-08-24
  • 刊出日期:  2023-11-05

/

返回文章
返回