Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical fiber high-temperature pressure sensor with weak temperature sensitivity

Wang Wei Li Jin-Yang Mao Guo-Pei Yang Yan Gao Zhi-Qiang Ma Cong Zhong Xiang-Yu Shi Qing

Citation:

Optical fiber high-temperature pressure sensor with weak temperature sensitivity

Wang Wei, Li Jin-Yang, Mao Guo-Pei, Yang Yan, Gao Zhi-Qiang, Ma Cong, Zhong Xiang-Yu, Shi Qing
PDF
HTML
Get Citation
  • In aerospace, petrochemical, gas turbines and other high-temperature environments, pressure measurement of equipment has always been a challenge to be solved. The electrical high temperature pressure sensor has the problem of component failure in high temperature environment, and it is difficult to use in the high temperature environment for a long time. The detection device of the optical fiber sensor does not include electrical components, so it has the advantages of high working temperature, high measurement accuracy, anti-electromagnetic interference and so on. In order to use a sensor to measure pressure in high temperature environment, a temperature-weakly sensitive optical fiber micro-electro-mechanical system (MEMS) pressure sensing technology is proposed. The technique uses extrisic Fabry-Pérot interference (EFPI) model. It uses the MEMS pressure chip to passively modulate the optical signal of the interference, and then realizes the pressure signal measurement. Among them, MEMS pressure sensitive chip is the core component of the sensor. The MEMS pressure sensitive chip adopts the design method of all solid state vacuum absolute pressure. Change in environmental pressure will deform the membrane. This phenomenon can cause change in the cavity of the EFPI cavity. Therefore, stress information can be obtained by measuring changes in EFPI cavity. The thermal stress and temperature parasitical response introduced by thermal expansion of the material are calculated by simulation. The influence of temperature signal on chip displacement is analyzed by the above results. On this basis, a prototype of high temperature pressure sensor is developed by combining the sub-micron white light interference response technology and low thermal stress packaging technology. In order to test the ability of the sensor to implement actual measurement, this paper carry out the pressure test and high temperature test respectively. When the pressure changes from 0 kPa to 100 kPa, the spectral intensity of the sensor output has a linear relationship with the pressure. During the temperature changing from 20–400 ℃, the spectral intensity of the sensor output does not change significantly. The experimental test results show that the pressure measurement of 0–100 kPa can be satisfied in the range of 20–400 ℃, and the measurement error introduced by temperature change is less than 4%. Therefore, the fiber pressure sensor can be used to measure the pressure in high temperature environment.
    [1]

    Wang Z, Chen J, Wei H, Liu H, Ma Z, Chen N, Wang T, Pang F 2020 Appl. Opt. 59 5189Google Scholar

    [2]

    Li W W, Liang T, Jia P G, Lei C, Hong Y P, Li Y W, Yao Z, Liu W Y, Xiong J J 2019 Appl. Opt. 58 1662Google Scholar

    [3]

    Ma W Y, Jiang Y, Gao H C 2019 Meas. Sci. Technol. 30 025104Google Scholar

    [4]

    何文涛, 李艳华, 邹江波, 张世名, 赵和平, 金小锋, 杨龙 2016 遥测遥控 37 61Google Scholar

    He W T, Li Y H, Zou J B, Zhang S M, Zhao H P, Jin X F, Yang L 2016 J. Telem. Track. Command. 37 61Google Scholar

    [5]

    Guo S W, Eriksen H, Childress K, Fink A, Hoffman M 2009 Sens. Actuator A Phys. 154 255Google Scholar

    [6]

    李达, 白雪平, 王文祥, 易丛, 李刚, 贾鲁生, 李书兆 2018 中国海上油气 30 196

    Li D, Bai X P, Wang W X, Yi C, Li G, Jia L S, Li S Z 2018 China Offshore Oil Gas 30 196

    [7]

    Fraga M A, Furlan H, Pessoa R S, Massi M 2014 Microsyst. Technol. 20 9Google Scholar

    [8]

    施兴华, 路瑞, 杭岑, 稽春艳 2016 中国海洋平台 45 135

    Shi X H, Lu R, Hang C, Ji C Y 2016 China Offshore Platf. 45 135

    [9]

    刘铁根, 王双, 江俊峰, 刘琨, 尹金德 2014 仪器仪表学报 35 1681

    Liu T G, Wang S, Jiang J F, Liu K, Yin J D 2014 Chin. J. Sci. Instrum. 35 1681

    [10]

    Ma Z B, Cheng S L, Kou W Y, Chen H B, Wang W, Zhang X X, Guo T X 2019 Sensors 19 4097Google Scholar

    [11]

    Dai L H, Wang M, Cai D Y, Rong H, Zhu J L, Jia S, You J J 2013 IEEE Photon. Technol. Lett. 25 2505Google Scholar

    [12]

    Yu Q X, Zhou X L 2011 Photonic Sens. 1 72Google Scholar

    [13]

    Chen X Z, Tong X L, Zhang C, Deng C W, Mao Y, Chen S M 2022 Opt. Commun. 506 127580Google Scholar

    [14]

    毛国培, 李金洋, 史青 2020 遥测遥控 41 12

    Mao G P, Li J Y, Shi Q 2020 J. Telem. Track. Command. 41 12

    [15]

    Harpin A 2009 Sensor and Test Conference Nuremberg, Germany, May 26–28, 2009 p89

    [16]

    Pechstedt R D 2013 Fifth European Workshop on Optical Fibre Sensors Krakow, Poland, May 19–22, 2013 p879405

    [17]

    Sposito A, Pechstedt R D 2016 Metrology for Aerospace. IEEE Florence, Italy, June 22–23, 2016 p97

    [18]

    Yi J H, Lally E, Wang A B, Xu Y 2011 IEEE Photon. Technol. Lett. 23 9Google Scholar

    [19]

    Mills D A, Alexander D, Subhash G, Sheplak M 2014 SPIE Sensing Technology + Applications Baltimore, MD, United States, June 5–6, 2014 p9113

    [20]

    Zhou H C, Mills D A, Vera A, Garraud A, Oates W, Sheplak M 2019 AIAA Scitech 2019 Forum San Diego, California, January 7–11, 2019 p2044

    [21]

    Tomboza W, Cotillard R, Roussel N, Huy M C P, Bouwmans G, Laffont G 2022 Optica Advanced Photonics Congress Maastricht, Limburg Netherlands, July 24–28, 2022 pBTh2A. 3

    [22]

    饶云江 2009 电子科技大学学报 38 487

    Rao Y J 2009 J. Univ. Electron. Sci. Technol. China 38 487

    [23]

    张硕, 江毅 2018 仪表技术与传感器 1 10

    Zhang S, Jiang Y 2018 Instrum. Tech. Sens. 1 10

    [24]

    Zhang Y T, Jiang Y, Cui Y, Feng X X, Hu J 2022 Meas. Sci. Technol. 33 055117Google Scholar

    [25]

    盛天宇, 李建, 李鸿昌, 蒋永刚 2022 中国机械工程 33 1803Google Scholar

    Sheng T Y, Li J, Li H C, Jiang Y G 2022 Chin. J. Mech. Eng. En. 33 1803Google Scholar

    [26]

    郭雪涛 2019 硕士学位论文 (西安: 西北工业大学)

    Guo X T 2019 M. S. Thesis (Xi’an: Northwestern Polytechnical University

    [27]

    陈青青, 唐瑛, 王可宁, 陈海滨, 马志波 2018 激光与光电子学进展 55 110603Google Scholar

    Chen Q Q, Tang Y, Wang K N, Chen H B, Ma Z B 2018 Laser Optoelectron. Prog. 55 110603Google Scholar

    [28]

    李奇思 2019 硕士学位论文 (太原: 中北大学)

    Li Q S 2019 M. S. Thesis (Taiyuan: North University of China

    [29]

    颜维海 2022 硕士学位论文 (西安: 西安工业大学)

    Yan W H 2022 M. S. Thesis (Xi’an: Xi’an Technological University

    [30]

    Li J S, Jia P G, Fang G C, Wang J, Qian J, Ren Q Y, Xiong J J 2022 Sens. Actuator A Phys. 334 113363Google Scholar

    [31]

    何文涛, 赵光再, 宁佳晨, 李金洋, 史青 2019 遥测遥控 40 17

    He W T, Zhao G Z, Ning J C, Li J Y, Shi Q 2019 J. Telem. Track. Command. 40 17

    [32]

    徐鹏柏 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Xu P B 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [33]

    张伟航 2016 硕士学位论文 (天津: 天津大学)

    Zhang W H 2016 M. S. Thesis (Tianjin: Tianjin University

  • 图 1  光纤压力传感器模型

    Figure 1.  Fiber optic pressure sensor model.

    图 2  压力敏感芯片结构模型

    Figure 2.  Structural model of the pressure-sensitive chip.

    图 3  压力敏感芯片中光路传播示意图

    Figure 3.  Diagram of light path propagation in pressure sensitive chip.

    图 4  光纤解调系统

    Figure 4.  Fiber optic demodulation system.

    图 5  热应力影响

    Figure 5.  Influence of thermal stress.

    图 6  敏感芯片受力位移模型

    Figure 6.  Force displacement model of pressure sensitive chip.

    图 7  敏感芯片制备工艺流程图

    Figure 7.  Chip preparation process steps.

    图 8  绝压敏感芯片

    Figure 8.  Absolute pressure sensitive chip.

    图 9  传感器熔接元件 (a) 敏感芯片与玻璃管熔接部位; (b) 插芯与玻璃管熔接部位

    Figure 9.  Sensor welding element: (a) Welding position of sensitive chip and glass tube; (b) core and glass tube welding position.

    图 10  传感器实物封装结构

    Figure 10.  Sensor package structure.

    图 11  实验测试设备 (a) 压力箱; (b) 管式炉

    Figure 11.  Sensor test equipment: (a) Pressure chamber; (b) tubular furnace.

    图 12  20 ℃下, 传感器压力变化反射光谱 (a) 100 kPa; (b) 0 kPa; (c) 100 kPa

    Figure 12.  Sensor pressure change reflection spectrum at 20 ℃: (a) 100 kPa; (b) 0 kPa; (c) 100 kPa.

    图 13  传感器光谱强度随压力实时变化

    Figure 13.  Sensor spectral intensity varies with pressure in real time.

    图 14  传感器光谱强度随压力变化关系

    Figure 14.  Sensor spectral intensity varies with the pressure.

    图 15  常压100 kPa下, 传感器温度变化反射光谱 (a) 20 ℃; (b) 400 ℃; (c) 20 ℃

    Figure 15.  Sensor temperature change reflection spectrum at normal pressure of 100 kPa: (a) 20 ℃; (b) 400 ℃; (c) 20 ℃.

    图 16  传感器相对强度随温度变化关系

    Figure 16.  Sensor strength varies with the temperature.

    表 1  敏感芯片的结构参数

    Table 1.  Structural parameters of the chip.

    结构芯片
    直径
    芯片
    厚度
    感压腔
    直径
    感压
    膜厚
    腔体
    长度
    尺寸/mm20.71.40.080.002
    DownLoad: CSV
  • [1]

    Wang Z, Chen J, Wei H, Liu H, Ma Z, Chen N, Wang T, Pang F 2020 Appl. Opt. 59 5189Google Scholar

    [2]

    Li W W, Liang T, Jia P G, Lei C, Hong Y P, Li Y W, Yao Z, Liu W Y, Xiong J J 2019 Appl. Opt. 58 1662Google Scholar

    [3]

    Ma W Y, Jiang Y, Gao H C 2019 Meas. Sci. Technol. 30 025104Google Scholar

    [4]

    何文涛, 李艳华, 邹江波, 张世名, 赵和平, 金小锋, 杨龙 2016 遥测遥控 37 61Google Scholar

    He W T, Li Y H, Zou J B, Zhang S M, Zhao H P, Jin X F, Yang L 2016 J. Telem. Track. Command. 37 61Google Scholar

    [5]

    Guo S W, Eriksen H, Childress K, Fink A, Hoffman M 2009 Sens. Actuator A Phys. 154 255Google Scholar

    [6]

    李达, 白雪平, 王文祥, 易丛, 李刚, 贾鲁生, 李书兆 2018 中国海上油气 30 196

    Li D, Bai X P, Wang W X, Yi C, Li G, Jia L S, Li S Z 2018 China Offshore Oil Gas 30 196

    [7]

    Fraga M A, Furlan H, Pessoa R S, Massi M 2014 Microsyst. Technol. 20 9Google Scholar

    [8]

    施兴华, 路瑞, 杭岑, 稽春艳 2016 中国海洋平台 45 135

    Shi X H, Lu R, Hang C, Ji C Y 2016 China Offshore Platf. 45 135

    [9]

    刘铁根, 王双, 江俊峰, 刘琨, 尹金德 2014 仪器仪表学报 35 1681

    Liu T G, Wang S, Jiang J F, Liu K, Yin J D 2014 Chin. J. Sci. Instrum. 35 1681

    [10]

    Ma Z B, Cheng S L, Kou W Y, Chen H B, Wang W, Zhang X X, Guo T X 2019 Sensors 19 4097Google Scholar

    [11]

    Dai L H, Wang M, Cai D Y, Rong H, Zhu J L, Jia S, You J J 2013 IEEE Photon. Technol. Lett. 25 2505Google Scholar

    [12]

    Yu Q X, Zhou X L 2011 Photonic Sens. 1 72Google Scholar

    [13]

    Chen X Z, Tong X L, Zhang C, Deng C W, Mao Y, Chen S M 2022 Opt. Commun. 506 127580Google Scholar

    [14]

    毛国培, 李金洋, 史青 2020 遥测遥控 41 12

    Mao G P, Li J Y, Shi Q 2020 J. Telem. Track. Command. 41 12

    [15]

    Harpin A 2009 Sensor and Test Conference Nuremberg, Germany, May 26–28, 2009 p89

    [16]

    Pechstedt R D 2013 Fifth European Workshop on Optical Fibre Sensors Krakow, Poland, May 19–22, 2013 p879405

    [17]

    Sposito A, Pechstedt R D 2016 Metrology for Aerospace. IEEE Florence, Italy, June 22–23, 2016 p97

    [18]

    Yi J H, Lally E, Wang A B, Xu Y 2011 IEEE Photon. Technol. Lett. 23 9Google Scholar

    [19]

    Mills D A, Alexander D, Subhash G, Sheplak M 2014 SPIE Sensing Technology + Applications Baltimore, MD, United States, June 5–6, 2014 p9113

    [20]

    Zhou H C, Mills D A, Vera A, Garraud A, Oates W, Sheplak M 2019 AIAA Scitech 2019 Forum San Diego, California, January 7–11, 2019 p2044

    [21]

    Tomboza W, Cotillard R, Roussel N, Huy M C P, Bouwmans G, Laffont G 2022 Optica Advanced Photonics Congress Maastricht, Limburg Netherlands, July 24–28, 2022 pBTh2A. 3

    [22]

    饶云江 2009 电子科技大学学报 38 487

    Rao Y J 2009 J. Univ. Electron. Sci. Technol. China 38 487

    [23]

    张硕, 江毅 2018 仪表技术与传感器 1 10

    Zhang S, Jiang Y 2018 Instrum. Tech. Sens. 1 10

    [24]

    Zhang Y T, Jiang Y, Cui Y, Feng X X, Hu J 2022 Meas. Sci. Technol. 33 055117Google Scholar

    [25]

    盛天宇, 李建, 李鸿昌, 蒋永刚 2022 中国机械工程 33 1803Google Scholar

    Sheng T Y, Li J, Li H C, Jiang Y G 2022 Chin. J. Mech. Eng. En. 33 1803Google Scholar

    [26]

    郭雪涛 2019 硕士学位论文 (西安: 西北工业大学)

    Guo X T 2019 M. S. Thesis (Xi’an: Northwestern Polytechnical University

    [27]

    陈青青, 唐瑛, 王可宁, 陈海滨, 马志波 2018 激光与光电子学进展 55 110603Google Scholar

    Chen Q Q, Tang Y, Wang K N, Chen H B, Ma Z B 2018 Laser Optoelectron. Prog. 55 110603Google Scholar

    [28]

    李奇思 2019 硕士学位论文 (太原: 中北大学)

    Li Q S 2019 M. S. Thesis (Taiyuan: North University of China

    [29]

    颜维海 2022 硕士学位论文 (西安: 西安工业大学)

    Yan W H 2022 M. S. Thesis (Xi’an: Xi’an Technological University

    [30]

    Li J S, Jia P G, Fang G C, Wang J, Qian J, Ren Q Y, Xiong J J 2022 Sens. Actuator A Phys. 334 113363Google Scholar

    [31]

    何文涛, 赵光再, 宁佳晨, 李金洋, 史青 2019 遥测遥控 40 17

    He W T, Zhao G Z, Ning J C, Li J Y, Shi Q 2019 J. Telem. Track. Command. 40 17

    [32]

    徐鹏柏 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Xu P B 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [33]

    张伟航 2016 硕士学位论文 (天津: 天津大学)

    Zhang W H 2016 M. S. Thesis (Tianjin: Tianjin University

  • [1] Wang Song, Zhou Chuang, Li Su-Wen, Mou Fu-Sheng. Method of measuring atmospheric CO2 based on Fabry-Perot interferometer. Acta Physica Sinica, 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [3] Li Zhi-Qiang, Tan Xiao-Yu, Duan Xin-Lei, Zhang Jing-Yi, Yang Jia-Yue. Deep learning molecular dynamics simulation on microwave high-temperature dielectric function of silicon nitride. Acta Physica Sinica, 2022, 71(24): 247803. doi: 10.7498/aps.71.20221002
    [4] Li Ming-Zhu, Cai Xiao-Wu, Zeng Chuan-Bin, Li Xiao-Jing, Li Duo-Li, Ni Tao, Wang Juan-Juan, Han Zheng-Sheng, Zhao Fa-Zhan. Effect of high-temperature on holding characteristics in MOSFET ESD protecting device. Acta Physica Sinica, 2022, 71(12): 128501. doi: 10.7498/aps.71.20220172
    [5] Dong Jiu-Feng, Deng Xing-Lei, Niu Yu-Juan, Pan Zi-Zhao, Wang Hong. Research progress of polymer based dielectrics for high-temperature capacitor energy storage. Acta Physica Sinica, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [6] Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei. High-pressure structure prediction and high-temperature structural stability of periclase. Acta Physica Sinica, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [7] Zhang Wei, Liu Ying-Gang, Zhang Ting, Liu Xin, Fu Hai-Wei, Jia Zhen-An. Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor. Acta Physica Sinica, 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [8] Wang Jun, Cui Meng, Lu Hong, Wang Li, Yan Qing, Liu Jing-Jing, Hua Deng-Xin. Investigation of the absolute detection method of atmospheric temperature based on solid cavity scanning Fabry-Perot interferometer. Acta Physica Sinica, 2017, 66(8): 089202. doi: 10.7498/aps.66.089202
    [9] Yang Yi, Xu Ben, Liu Ya-Ming, Li Ping, Wang Dong-Ning, Zhao Chun-Liu. Sensitivity-enhanced temperature sensor with fiber optic Fabry-Perot interferometer based on vernier effect. Acta Physica Sinica, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [10] Li Zi-Liang, Liao Chang-Rui, Liu Shen, Wang Yi-Ping. Research progress of in-fiber Fabry-Perot interferometric temperature and pressure sensors. Acta Physica Sinica, 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [11] Zhang Xing, Zhang Yi, Zhang Jian-Wei, Zhang Jian, Zhong Chu-Yu, Huang You-Wen, Ning Yong-Qiang, Gu Si-Hong, Wang Li-Jun. 894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system. Acta Physica Sinica, 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [12] Gao Ying-Jun, Qin He-Lin, Zhou Wen-Quan, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao. Phase field crystal simulation of grain boundary annihilation under strain strain at high temperature. Acta Physica Sinica, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [13] Han Yong, Long Xin-Ping, Guo Xiang-Li. Prediction of methane PVT relations at high temperatures by a simplified virial equation of state. Acta Physica Sinica, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [14] Song Yun-Fei, Yu Guo-Yang, Yin He-Dong, Zhang Ming-Fu, Liu Yu-Qiang, Yang Yan-Qiang. Temperature dependence of elastic modulus of single crystal sapphire investigated by laser ultrasonic. Acta Physica Sinica, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [15] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [16] Wang Li-Hong, You Jing-Lin, Wang Yuan-Yuan, Zheng Shao-Bo, Simon Patrick, Hou Min, Ji Zi-Fang. Temperature dependent Raman spectra and micro-structure study of hexagonal MgTiO3 crystal. Acta Physica Sinica, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [17] Ma Li, Tan Zhen-Bing, Tan Chang-Ling, Liu Guang-Tong, Yang Chang-Li, Lü Li. Fabrication of graphene nanoribbons through mechanical cleavage and their electronic transport properties at low temperature. Acta Physica Sinica, 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [18] Fan Zhen-Jun, Geng Xue-Wen, Kong Wen-Jie, Jin Yi-Rong. Measurement of anisotropy thermopower of decagonal AlCuCo quasicrystal. Acta Physica Sinica, 2009, 58(10): 7119-7123. doi: 10.7498/aps.58.7119
    [19] Song Xiao-Shu, Cheng Xin-Lu, Yang Xiang-Dong, Linghu Rong-Feng. Line intensities of 3000—0200 and 1001—0110 transition bands of 14N216O at high temperature. Acta Physica Sinica, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [20] Li Gong-Ping, Zhang Mei-Ling. Energetics and structures of high-temperature copper cluster studied by Monte Carlo method. Acta Physica Sinica, 2005, 54(6): 2873-2876. doi: 10.7498/aps.54.2873
Metrics
  • Abstract views:  911
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Received Date:  17 July 2023
  • Accepted Date:  16 August 2023
  • Available Online:  08 October 2023
  • Published Online:  05 January 2024

/

返回文章
返回