Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional numerical simulation of pre-ionized direct-current glow discharge in atmospheric helium

Liu Zai-Hao Liu Ying-Hua Xu Bo-Ping Yin Pei-Qi Li Jing Wang Yi-Shan Zhao Wei Duan Yi-Xiang Tang Jie

Citation:

Two-dimensional numerical simulation of pre-ionized direct-current glow discharge in atmospheric helium

Liu Zai-Hao, Liu Ying-Hua, Xu Bo-Ping, Yin Pei-Qi, Li Jing, Wang Yi-Shan, Zhao Wei, Duan Yi-Xiang, Tang Jie
PDF
HTML
Get Citation
  • In this paper, the effect of pre-ionization on the small-gap and large-gap direct-current glow discharge at atmospheric pressure are investigated based on a two-dimensional self-consistent fluid model. For both the discharges, the results show that with the enhancement of pre-ionization, the charged particle distribution gradually shifts toward the cathode along the discharge direction, making the cathode fall zone shrink continuously. The width of the positive column region, negative glow space, and cathode fall zone continuously extend along the vertical discharge direction, and the distribution of electron density and ion density are more uniform. For the electric field, with the enhancement of pre-ionization, the longitudinalal component distribution of the electric field in the cathode fall zone gradually contracts toward the cathode, and the overall electric field near the cathode decreases and becomes more uniformly distributed. The transverse component distribution of the electric field gradually decreases and shrinks toward the wall. The overall electron temperature in the discharge space decreases with the enhancement of the pre-ionization level, and the electron temperature distribution in the cathode fall zone gradually shrinks toward the cathode. In addition, the overall potential of the discharge space also decreases. The introduction of pre-ionization significantly reduces the maintaining voltage and discharge power of the direct-current glow discharge. Furthermore, the potential drop in the small-gap discharge is always concentrated in the cathode fall zone as the pre-ionization increases, while the potential drop in the large-gap discharge is gradually shifted from the cathode fall zone to the positive column region. This simulation shows that the pre-ionization not only effectively enhances the discharge uniformity, but also largely reduces the maintaining voltage and energy consumption of the direct-current glow discharge. This work is an important guideline for further optimizing the electrode configuration and the operating parameters of the plasma source.
      Corresponding author: Tang Jie, tangjie@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52177166, 51877210) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JM-309).
    [1]

    Hansen L, Kohlmann N, Kienle L, Kersten H 2023 Thin Solid Films 765 139633Google Scholar

    [2]

    Marcus R K, Hoegg E D, Hall K A, Williams T J, Koppenaal D W 2021 Mass Spec. Rev. 42 652Google Scholar

    [3]

    Zheng P C, Luo Y J, Wang J M, Yang Y, Hu Q, Mao X F, Lai C H 2022 Microchem. J. 172 106883Google Scholar

    [4]

    Ibrahim J, Al-Bataineh S A, Michelmore A, Whittle J D 2021 Plasma Chem. Plasma P. 41 47Google Scholar

    [5]

    Schoenbach K H, Becker K 2016 Eur. Phys. J. D 70 29Google Scholar

    [6]

    Wanten B, Maerivoet S, Vantomme C, Slaets J, Trenchev G, Bogaerts A 2022 J. CO2 Util. 56 101869Google Scholar

    [7]

    Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M 2015 Plasma Chem. Plasma P. 35 659Google Scholar

    [8]

    刘定新, 何桐桐, 张浩 2019 高电压技术 45 14Google Scholar

    Liu D X, He T T, Zhang H 2019 High Voltage Engineering 45 14Google Scholar

    [9]

    Lei B Y, Xu B P, Wang J, Mao X L, Li J, Wang Y S, Zhao W, Duan Y X, Zorba V, Tang J 2023 Cell Rep. Phys. Sci. 4 101267Google Scholar

    [10]

    朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博 2022 物理学报 71 145201Google Scholar

    Zhu H L, Shi Y J, Wang J W, Zhang Z L, Gao Y N, Zhang F B 2022 Acta Phys. Sin. 71 145201Google Scholar

    [11]

    李成榕, 王新新, 詹花茂, 张贵新 2003 高压电器 39 4Google Scholar

    Li C R, Wang X X, Zhan H M, Zhang G X 2003 High Voltage Apparatus 39 4Google Scholar

    [12]

    Staack D, Farouk B, Gutsol A, Fridman A 2005 Plasma Sources Sci. Technol. 14 700Google Scholar

    [13]

    王艳辉, 王德真 2003 物理学报 52 1694Google Scholar

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694Google Scholar

    [14]

    齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁 2022 物理学报 71 245202Google Scholar

    Qi B, Tian X, Wang J, Wang Y S, Si J H, Tang J 2022 Acta Phys. Sin. 71 245202Google Scholar

    [15]

    Massines F, Gherardi N, Naude N, Segur P 2009 Eur. Phys. J. Appl. Phys. 47 22805Google Scholar

    [16]

    Sremački I, Gromov M, Leys C, Morent R, Snyders R, Nikiforov A 2020 Plasma Process. Polym. 17 1900191Google Scholar

    [17]

    Mohamed A A H, Kolb J F, Schoenbach K H 2010 Eur. Phys. J. D 60 517Google Scholar

    [18]

    Rathore K, Wakim D, Chitre A, Staack D 2020 Plasma Sources Sci. Technol. 29 055011Google Scholar

    [19]

    Hansen L, Kohlmann N, Schürmann U, Kienle L, Kersten H 2022 Plasma Sources Sci. Technol. 31 035013Google Scholar

    [20]

    Bieniek M S, Hasan M I 2022 Phys. Plasmas 29 034503Google Scholar

    [21]

    Tochikubo F, Shirai N, Uchida S 2011 Appl. Phys. Express 4 056001Google Scholar

    [22]

    Saifutdinov A I 2021 J. Appl. Phys. 129 093302Google Scholar

    [23]

    Wang Q, Economou D J, Donnelly V M 2006 J. Appl. Phys. 100 023301Google Scholar

    [24]

    齐冰, 任春生, 马腾才, 王友年, 王德真 2006 物理学报 55 331Google Scholar

    Qi B, Ren C S, Ma T C, Wang Y N, Wang D Z 2006 Acta Phys. Sin. 55 331Google Scholar

    [25]

    Tang J, Li S B, Zhao W, Wang Y S, Duan Y X 2012 Appl. Phys. Lett. 100 253505Google Scholar

    [26]

    Li X M, Tang J, Zhan X F, Yuan X, Zhao Z J, Yan Y Y, Duan Y X 2013 Appl. Phys. Lett. 103 033519Google Scholar

    [27]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2014 Appl. Phys. Lett. 104 013505Google Scholar

    [28]

    Li J, Wang J, Lei B Y, Zhang T Y, Tang J, Wang Y S, Zhao W, Duan Y X 2020 Adv. Sci. 7 1902616Google Scholar

    [29]

    Sasaki K, Hosoda R, Shirai N 2020 Plasma Sources Sci. Technol. 29 085012Google Scholar

    [30]

    王晓臣, 王宁会, 李国峰 2007 高电压技术 33 2Google Scholar

    Wang X C, Wang N H, Li G F 2007 High Voltage Engineering 33 2Google Scholar

    [31]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [32]

    Laca M, Kaňka A, Schmiedt L, Hrachová V, Morávek M J 2019 Contrib. Plasma Phys. 59 e201800190Google Scholar

    [33]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Process Polym. 5 569Google Scholar

    [34]

    Wang Y H, Wang D Z 2004 Chin. Phys. Lett. 21 2234Google Scholar

    [35]

    Kong M G, Xu T D 2003 IEEE Trans. Plasma Sci. 31 7Google Scholar

    [36]

    Yuan X, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [37]

    张百灵, 王宇天, 李益文, 樊昊, 高岭, 段成铎 2016 高电压技术 42 7Google Scholar

    Zhang B L, Wang Y T, Li Y W, Fan H, Gao L, Duan C D 2016 High Voltage Engineering 42 7Google Scholar

  • 图 1  模型示意图

    Figure 1.  Schematic diagram of the simulation model.

    图 2  短间隙放电中不同预电离下电子密度(a)和离子密度(b)的空间分布

    Figure 2.  Spatial distributions of electron densities (a) and ion densities (b) at different pre-ionization in the small-gap discharge.

    图 3  不同预电离下带电粒子密度的空间分布 (a)正柱区空间分布; (b)正柱区空间分布的放大图; (c) y = 0.5 mm处电子密度峰值的空间分布; (d) y = 0.5 mm处离子密度峰值的空间分布

    Figure 3.  Spatial distributions of charged particles densities under different pre-ionization: (a) Spatial distributions of the positive column region; (b) enlarged view of spatial distributions of the positive column region; (c) spatial distributions at the peak of electron density at y = 0.5 mm; (d) spatial distributions at the peak of ion density at y = 0.5 mm.

    图 4  短间隙放电中不同预电离下, 电场的空间分布 (a)纵向分量; (b)横向分量

    Figure 4.  Spatial distributions of electric field at different pre-ionization in the small-gap discharge: (a) Longitudinal component; (b) transverse component.

    图 5  (a) 不同预电离下, 阴极处电场纵向分量的空间分布; (b)不同预电离下, 电场横向分量峰值处的空间分布

    Figure 5.  (a) Spatial distributions of longitudinal component of the electric field in the cathode under different pre-ionization; (b) spatial distributions at the peak of transverse component of the electric field under different pre-ionization.

    图 6  不同预电离下, 电势(a)和电子温度(b)的空间分布

    Figure 6.  Spatial distributions of potential (a) and electron temperature (b) at different pre-ionization.

    图 7  不同预电离下 (a) x = 0.8 mm处的电势空间分布; (b) y = 0.5 mm处电子温度峰值处的空间分布; (c)维持电压和放电电流的变化; (d)放电功率的变化

    Figure 7.  Under different pre-ionization: (a) Spatial distribution of potential at x = 0.8 mm; (b) spatial distributions at the peak of the electron temperature at y = 0.5 mm; (c) variations of sustaining voltage, discharge current; (d) variations of discharge power.

    图 8  长间隙放电中不同预电离下, 电子密度(a)和离子密度(b)的空间分布

    Figure 8.  Spatial distributions of electron densities (a) and ion densities (b) at different pre-ionization in the large-gap discharge.

    图 9  不同预电离下, 带电粒子密度的空间分布 (a)正柱区的空间分布; (b)正柱区空间分布的放大图; (c) y = 0.5 mm电子密度峰值的空间分布; (d) y = 0.5 mm离子密度峰值的空间分布

    Figure 9.  Spatial distributions of charged particles densities under different pre-ionization: (a) Spatial distributions of the positive column region; (b) enlarged view of spatial distributions of the positive column region; (c) spatial distributions at the peak of electron density at y = 0.5 mm; (d) spatial distributions at the peak of ion density at y = 0.5 mm.

    图 10  长间隙放电中不同预电离下, 电场的空间分布 (a)纵向分量; (b)横向分量

    Figure 10.  Spatial distributions of electric field at different pre-ionization in the large-gap discharge: (a) Longitudinal component; (b) transverse component.

    图 11  (a) 不同预电离下, 阴极处电场纵向分量的空间分布; (b)不同预电离下, 电场横向分量峰值处的空间分布

    Figure 11.  (a) Spatial distributions of longitudinal component of the electric field in the cathode under different pre-ionization; (b) spatial distributions at the peak of transverse component of the electric field under different pre-ionization.

    图 12  不同预电离下, 电势(a)和电子温度(b)的空间分布

    Figure 12.  Spatial distributions of potential (a) and electron temperature (b) at different pre-ionization.

    图 13  不同预电离下 (a) x = 8 mm处的电势空间分布; (b) y = 0.5 mm电子温度峰值处的空间分布; (c)维持电压、放电电流和(d)放电功率的变化

    Figure 13.  Under different pre-ionization: (a) Spatial distribution of potential at x = 8 mm; (b) spatial distributions at the peak of the electron temperature at y = 0.5 mm; (c) variations of sustaining voltage, discharge current and (d) discharge power.

    表 1  模型中的化学反应

    Table 1.  Chemical reactions in the model.

    No. Reaction Rate constant/
    (cm–3·s–1)
    Ref.
    1 e+He → e+He f(E/N) [31]
    2 e+He → e+He* f(E/N) [32]
    3 e+He → 2e+He+ f(E/N) [32]
    4 2e+He+ → He*+e 7.1$ \times $10–20a) [32]
    5 2e+$ {\text{He}}_{2}^{+} $ → 2He+e 2.0$ \times $10–20a) [32]
    6 2e+$ {\text{He}}_{2}^{+} $ → He+He*+e 2.8$ \times $10–20a) [33]
    7 e+He+$ {\text{He}}_{2}^{+} $ → 3He 2.0$ \times $10–27a) [33]
    8 e+He* → 2e+He+ 1.28$ \times $10–7$ {T}_{{\mathrm{e}}}^{0.6} $
    exp(–4.78/$ {T}_{{\mathrm{e}}} $)
    [33]
    9 e+$ {\text{He}}_{2}^{+} $ → He*+He 1$ \times $10–8 [33]
    10 He*+e → He+e 2$ \times $10–10 [33]
    11 2e+$ {\text{He}}_{2}^{+} $ → 2He*+e 6.18$ \times $10–39$ {T}_{{\mathrm{e}}}^{4.4} $a) [33]
    12 e+He+$ {\text{He}}_{2}^{+} $ → He*+2He 5.0$ \times $10–27a) [35]
    13 e+$ {\text{He}}_{2}^{+} $ → $ {\text{He}}_{2}^{\text{*}} $ 5.0$ \times $10–16 [35]
    14 e+He+$ {\text{He}}_{2}^{+} $ → $ {\text{He}}_{2}^{\text{*}} $+He 5.0$ \times $10–27a) [35]
    15 e+$ {\text{He}}_{2}^{\text{*}} $ → 2e+$ {\text{He}}_{2}^{+} $ 3.8$ \times $10–9 [36]
    16 e+He+ He+ → He*+He 1.0$ \times $10–27a) [36]
    17 2e+$ {\text{He}}_{2}^{+} $ → $ {\text{He}}_{2}^{\text{*}} $+e 7.1$ \times $10–20a) [35]
    18 2He+He+ → He+$ {\text{He}}_{2}^{+} $ 6.5$ \times $10–32a) [32]
    19 He*+He → 2He+$ h\nu $ 6.0$ \times $10–15 [32]
    20 He*+He* → e+$ {\text{He}}_{2}^{+} $ 2.0$ \times $10–9 [34]
    21 He*+He* → e+He+He+ 2.9$ \times $10–9 [35]
    a) Rate constant is in cm6·s–1.
    DownLoad: CSV
  • [1]

    Hansen L, Kohlmann N, Kienle L, Kersten H 2023 Thin Solid Films 765 139633Google Scholar

    [2]

    Marcus R K, Hoegg E D, Hall K A, Williams T J, Koppenaal D W 2021 Mass Spec. Rev. 42 652Google Scholar

    [3]

    Zheng P C, Luo Y J, Wang J M, Yang Y, Hu Q, Mao X F, Lai C H 2022 Microchem. J. 172 106883Google Scholar

    [4]

    Ibrahim J, Al-Bataineh S A, Michelmore A, Whittle J D 2021 Plasma Chem. Plasma P. 41 47Google Scholar

    [5]

    Schoenbach K H, Becker K 2016 Eur. Phys. J. D 70 29Google Scholar

    [6]

    Wanten B, Maerivoet S, Vantomme C, Slaets J, Trenchev G, Bogaerts A 2022 J. CO2 Util. 56 101869Google Scholar

    [7]

    Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M 2015 Plasma Chem. Plasma P. 35 659Google Scholar

    [8]

    刘定新, 何桐桐, 张浩 2019 高电压技术 45 14Google Scholar

    Liu D X, He T T, Zhang H 2019 High Voltage Engineering 45 14Google Scholar

    [9]

    Lei B Y, Xu B P, Wang J, Mao X L, Li J, Wang Y S, Zhao W, Duan Y X, Zorba V, Tang J 2023 Cell Rep. Phys. Sci. 4 101267Google Scholar

    [10]

    朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博 2022 物理学报 71 145201Google Scholar

    Zhu H L, Shi Y J, Wang J W, Zhang Z L, Gao Y N, Zhang F B 2022 Acta Phys. Sin. 71 145201Google Scholar

    [11]

    李成榕, 王新新, 詹花茂, 张贵新 2003 高压电器 39 4Google Scholar

    Li C R, Wang X X, Zhan H M, Zhang G X 2003 High Voltage Apparatus 39 4Google Scholar

    [12]

    Staack D, Farouk B, Gutsol A, Fridman A 2005 Plasma Sources Sci. Technol. 14 700Google Scholar

    [13]

    王艳辉, 王德真 2003 物理学报 52 1694Google Scholar

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694Google Scholar

    [14]

    齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁 2022 物理学报 71 245202Google Scholar

    Qi B, Tian X, Wang J, Wang Y S, Si J H, Tang J 2022 Acta Phys. Sin. 71 245202Google Scholar

    [15]

    Massines F, Gherardi N, Naude N, Segur P 2009 Eur. Phys. J. Appl. Phys. 47 22805Google Scholar

    [16]

    Sremački I, Gromov M, Leys C, Morent R, Snyders R, Nikiforov A 2020 Plasma Process. Polym. 17 1900191Google Scholar

    [17]

    Mohamed A A H, Kolb J F, Schoenbach K H 2010 Eur. Phys. J. D 60 517Google Scholar

    [18]

    Rathore K, Wakim D, Chitre A, Staack D 2020 Plasma Sources Sci. Technol. 29 055011Google Scholar

    [19]

    Hansen L, Kohlmann N, Schürmann U, Kienle L, Kersten H 2022 Plasma Sources Sci. Technol. 31 035013Google Scholar

    [20]

    Bieniek M S, Hasan M I 2022 Phys. Plasmas 29 034503Google Scholar

    [21]

    Tochikubo F, Shirai N, Uchida S 2011 Appl. Phys. Express 4 056001Google Scholar

    [22]

    Saifutdinov A I 2021 J. Appl. Phys. 129 093302Google Scholar

    [23]

    Wang Q, Economou D J, Donnelly V M 2006 J. Appl. Phys. 100 023301Google Scholar

    [24]

    齐冰, 任春生, 马腾才, 王友年, 王德真 2006 物理学报 55 331Google Scholar

    Qi B, Ren C S, Ma T C, Wang Y N, Wang D Z 2006 Acta Phys. Sin. 55 331Google Scholar

    [25]

    Tang J, Li S B, Zhao W, Wang Y S, Duan Y X 2012 Appl. Phys. Lett. 100 253505Google Scholar

    [26]

    Li X M, Tang J, Zhan X F, Yuan X, Zhao Z J, Yan Y Y, Duan Y X 2013 Appl. Phys. Lett. 103 033519Google Scholar

    [27]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2014 Appl. Phys. Lett. 104 013505Google Scholar

    [28]

    Li J, Wang J, Lei B Y, Zhang T Y, Tang J, Wang Y S, Zhao W, Duan Y X 2020 Adv. Sci. 7 1902616Google Scholar

    [29]

    Sasaki K, Hosoda R, Shirai N 2020 Plasma Sources Sci. Technol. 29 085012Google Scholar

    [30]

    王晓臣, 王宁会, 李国峰 2007 高电压技术 33 2Google Scholar

    Wang X C, Wang N H, Li G F 2007 High Voltage Engineering 33 2Google Scholar

    [31]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [32]

    Laca M, Kaňka A, Schmiedt L, Hrachová V, Morávek M J 2019 Contrib. Plasma Phys. 59 e201800190Google Scholar

    [33]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Process Polym. 5 569Google Scholar

    [34]

    Wang Y H, Wang D Z 2004 Chin. Phys. Lett. 21 2234Google Scholar

    [35]

    Kong M G, Xu T D 2003 IEEE Trans. Plasma Sci. 31 7Google Scholar

    [36]

    Yuan X, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [37]

    张百灵, 王宇天, 李益文, 樊昊, 高岭, 段成铎 2016 高电压技术 42 7Google Scholar

    Zhang B L, Wang Y T, Li Y W, Fan H, Gao L, Duan C D 2016 High Voltage Engineering 42 7Google Scholar

  • [1] Xiao Jiang-Ping, Dai Dong, Victor F. Tarasenko, Shao Tao. Mechanism of runaway electron generation in nanosecond pulsed plate-plate discharge at atmospheric-pressure air. Acta Physica Sinica, 2023, 72(10): 105201. doi: 10.7498/aps.72.20222409
    [2] Wang Qian, Fan Yuan-Yuan, Zhao Jiang-Shan, Liu Bin, Qi Yan, Yan Bo-Xia, Wang Yan-Wei, Zhou Mi, Han Zhe, Cui Hui-Rong. Analysis of preionization effect of excimer laser. Acta Physica Sinica, 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [3] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [4] Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie. Simulation of hollow cathode discharge in oxygen. Acta Physica Sinica, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [5] Qi Bing, Tian Xiao, Wang Jing, Wang Yi-Shan, Si Jin-Hai, Tang Jie. One-dimensional simulation of Ar dielectric barrier discharge driven by combined rf/dc sources at atmospheric pressure. Acta Physica Sinica, 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [6] Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan. Structure optimization of carbon nanotube ionization sensor based on fluid model. Acta Physica Sinica, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [7] Wang Qian, Zhao Jiang-Shan, Fan Yuan-Yuan, Guo Xin, Zhou Yi. Analysis of ArF excimer laser system discharge characteristics in different buffer gases. Acta Physica Sinica, 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [8] He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [9] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [10] Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun. Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse. Acta Physica Sinica, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [11] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [12] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [13] Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage. Acta Physica Sinica, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [14] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [15] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [16] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [17] Liu Hui, Wu Bo-Ying, E Peng, Duan Ping. Preionization of buffer chamber in ATON Hall thruster. Acta Physica Sinica, 2010, 59(10): 7203-7208. doi: 10.7498/aps.59.7203
    [18] Cheng Zhao-Gu, Li Xian-Qin, Chai Xiong-Liang, Gao Hai-Jun, Liu Cui-Qing. High power pulse CO2 laser with preionization burst-mode switch technology. Acta Physica Sinica, 2004, 53(5): 1362-1366. doi: 10.7498/aps.53.1362
    [19] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [20] FU GUANG-SHENG, YU WEI, WANG SHU-FANG, LI XIAO-WEI, ZHANG LIAN-SHUI, HAN LI. CARBON NITRIDE THIN FILMS PREPARED BY PULSED XeCl EXCIMERLASER DEPOSITION ASSISTED BY DC GLOW DISCHARGE. Acta Physica Sinica, 2001, 50(11): 2263-2268. doi: 10.7498/aps.50.2263
Metrics
  • Abstract views:  669
  • PDF Downloads:  34
  • Cited By: 0
Publishing process
  • Received Date:  03 May 2023
  • Accepted Date:  16 November 2023
  • Available Online:  29 November 2023
  • Published Online:  05 January 2024

/

返回文章
返回