Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of nanodiamonds based on phase transformation of vertical sheet under atmospheric pressure

Zhu Yi-Heng Zhu Zhi-Guang Chen Cheng-Ke Jiang Mei-Yan Li Xiao Lu Shao-Hua Hu Xiao-Jun

Citation:

Preparation of nanodiamonds based on phase transformation of vertical sheet under atmospheric pressure

Zhu Yi-Heng, Zhu Zhi-Guang, Chen Cheng-Ke, Jiang Mei-Yan, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun
PDF
HTML
Get Citation
  • A basic and important way to prepare diamond is to make graphite experience the phase transformation under the high-pressure high-temperature (HPHT) condition. However, this method needs stringent equipment and high investment cost. Recently, we proposed a method to prepare the diamond by phase transformation of graphite at atmospheric pressure with monodispersed Ta atoms. It is found that a phase transformation happens to H atoms under atmospheric pressure, but the role of O atoms has not been investigated. Here, we use tantalum wires as Ta source and heat the filaments to prepare vertical graphene containing Ta atoms in hot filament chemical vapor deposition (HFCVD) system. And then the vertical graphene layers are annealed in oxygen-containing environment, and nanodiamonds are obtained by phase transformation from the vertical graphene under atmospheric pressure. The results show that the sample morphologies are the same as the untreated vertical graphene’s, when the annealed ambient air pressure is at 10 Pa and 50 Pa with oxygen atom content of 1.96% and 2.04%, respectively; TEM tests reveal TaC and graphite but no diamond in these samples . Nanodiamond grains with the size range of 2–4 nm are observed in the amorphous carbon region of samples annealed at 100 Pa and 500 Pa air pressure with oxygen atom content increasing to 2.77% and 3.11%, respectively, indicating that oxidation facilitates the phase change from Ta-containing vertical graphene to diamond at atmospheric pressure. When the air pressure of the annealing environment rises to 1000 Pa with the oxygen atom content of 3.54%, the sample is extensively oxidized and the graphite structure is severely damaged,which means that a large number of oxygen atoms tend to disrupt the graphite structure rather than promote the phase change into diamond. These results supply a way to prepare nanodiamond and show the effect of O atoms in the graphite phase transition at atmospheric pressure.
      Corresponding author: Hu Xiao-Jun, huxj@zjut.edu.cn
    • Funds: Project supported by the Key Project of National Natural Science Foundation of China (Grant No. U1809210), the National Natural Science Foundation of China (Grant Nos. 52102052, 11504325, 52002351, 50972129, 50602039), the International Science and Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ15A040004, LY18E020013, LGC21E020001), and the Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021).
    [1]

    Sildos I, Loot A, Kiisk V, Puust L, Hizhnyakov V, Yelisseyev A, Osvet A, Vlasov I, Kiisk V 2017 Diam. Relat. Mater. 76 27Google Scholar

    [2]

    Santacruz-Gomez Karla, Sarabia-Sainz Acosta-Elias M, Sarabia-Sainz M, Janetanakit Woraphong, Khosla Nathan, Melendrez R, Montero Martin Pedroza, Lal Ratnesh 2018 Nanotechnology 29 12.Google Scholar

    [3]

    Mochalin V N, Shenderova O, Ho D, Gogotsi Y 2012 Nat. Nanotechnol. 7 11Google Scholar

    [4]

    李莲莲, 陈冠钦 2022 金刚石与磨料磨具工程 42 543Google Scholar

    Li L L, Chen G Q 2022 Diam. Abras. Eng. 42 543Google Scholar

    [5]

    Bulut B, Gunduz O, Baydogan M, Kayali E S 2020 Int. J. Refract. Met. H. 95 105466Google Scholar

    [6]

    Chen C K, He Z, Xu A C, Hu X J 2021 Funct. Diam. 1 117Google Scholar

    [7]

    Chen C K, Mei Y S, Cui J, Xiao L, Jiang M Y, Lu S H, Hu X J 2018 Carbon 139 982Google Scholar

    [8]

    Li X, Chen H, Wang C C, Chen C K, Jiang M Y, Hu X J 2023 Diam. Relat. Mater. 136 109927Google Scholar

    [9]

    Chen P, Huang F, Yun S 2004 Mater. Res. Bull. 39 1589Google Scholar

    [10]

    Jenei Z, O'bannon E F, Weir S T, Cynn H, Lipp M J, Evans W J 2018 Nat. Commun. 9 3563Google Scholar

    [11]

    Xu X Y, Yu Z M, Zhu Y W, Wang B C 2005 J. Solid State Chem. 178 688Google Scholar

    [12]

    苗卫朋, 丁玉龙, 翟黎鹏, 包华 2019 金刚石与磨料磨具工程 39 18Google Scholar

    Miao W P, Ding Y L, Zhai L P, Bao H 2019 Diam. Abras. Eng. 39 18Google Scholar

    [13]

    Chen C, Fan D, Xu H, Jiang M, Li X, Lu S, Ke C, Hu X 2022 Carbon 196 466Google Scholar

    [14]

    Jiang M Y, Chen C K, Wang P, Guo D F, Han S J, Li X, Lu S H, Hu X J 2022 P. Natl. Acad. Sci. USA 119 e2201451119Google Scholar

    [15]

    Zhu Z G, Jiang C Q, Chen C K, Lu S H, Jiang M Y, Li X, Hu X J 2023 Carbon 211 118098Google Scholar

    [16]

    Bo Z, Mao S, Han Z J, Cen K F, Chen J H, Ostrikov K 2015 Chem. Soc. Rev. 44 2108Google Scholar

    [17]

    Cancado L G, Jorio A, Ferreira E H, Capaz R B, Moutinhc W V O, Ferrari A C 2012 Nano Lett. 11 3190Google Scholar

    [18]

    Shimada T, Sugai T, Fantini C , Souza M, Cancado L G 2005 Carbon 43 1049Google Scholar

    [19]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [20]

    Gilkes K, Sands H S, Batchelder D N, Robertson J, Milne W I 1997 Appl. Phys. Lett. 70 1980Google Scholar

    [21]

    Liu F B, Wang J D, Chen D R, Yan, D Y 2009 Chin. Phys. B 18 2041Google Scholar

    [22]

    Gnien D M 1999 Annu. Rev. Mater. Res. 29 211

  • 图 1  样品FESEM图像 (a) 未处理样品; (b) 10 Pa样品; (c) 50 Pa样品; (d) 100 Pa样品; (e) 500 Pa样品; (f) 1000 Pa样品

    Figure 1.  FESEM images of samples: (a) Untreated sample; (b) 10 Pa sample; (c) 50 Pa sample; (d) 100 Pa sample; (e) 500 Pa sample; (f) 1000 Pa sample.

    图 2  (a) 未处理样品与不同气压下退火样品的Raman光谱; (b) 样品的ID/IG, I2D/IGID’/IG值随退火气压变化图

    Figure 2.  (a) Raman spectra of untreated sample and annealed samples at different air pressures; (b) ID/IG, I2D/IG and ID’/IG evolution with different annealed pressure of samples.

    图 3  (a) 未处理样品的低倍率HRTEM图片, 内插图为SAED图; (b) 未处理样品的高倍率HRTEM图片, 内插图为FT变换图; (c) 10 Pa样品的低倍率HRTEM图片, 内插图为SAED图; (d) 10 Pa样品的高倍率HRTEM图片, 内插图为FT变换图; (e) 50 Pa样品的HRTEM低倍率图片, 内插图为SAED图; (f) 50 Pa样品的高倍率HRTEM图片, 内插图为FT变换图

    Figure 3.  (a) Low-magnification HRTEM picture of untreated sample and its inset SAED pattern; (b) high-magnification picture of untreated sample and its inset FT graph; (c) low-magnification HRTEM picture of 10 Pa sample and its inset SAED pattern; (d) high-magnification HRTEM picture of 10 Pa sample and its inset FT graph; (e) low-magnification HRTEM picture of 50 Pa sample and its inset SAED pattern; (f) high-magnification HRTEM picture of 50 Pa sample and its inset FT graph.

    图 4  (a) 100 Pa样品的低倍率HRTEM图片, 内插图为SAED图; (b) 100 Pa样品的高倍率HRTEM图片, 内插图为FT变换图; (c)—(f) 图4(b)中框选区域放大图, FT-c, FT-d, FT-e和FT-f分别为其对应的FT变换图; (g) 100 Pa样品的能谱(TEM-EDS)图; (h) 100 Pa样品的HAADF和EDS-mapping图

    Figure 4.  (a) Low-magnification HRTEM picture of 10 Pa sample and its inset SAED pattern; (b) high-magnification HRTEM picture of 100 Pa sample and its inset FT graph; (c)–(f) enlarged of picture high-magnification in Fig. 4(b), FT-c, FT-d, FT-e and FT-f are all FT graphs; (g) TEM-EDS of 100 Pa sample; (h) HAADF and EDS-mapping of 100 Pa sample.

    图 5  (a) 500 Pa样品的低倍率HRTEM图片, 内插图为SAED图; (b) 500 Pa样品的高倍率HRTEM图片, 内插图为FT变换图; (c), (d) 图5(b)中框选区域放大图, FT-c和FT-d分别为对应的FT变换图; (e) 1000 Pa样品的低倍率HRTEM图片, 内插图为SAED图; (f) 1000 Pa样品的高倍率HRTEM图片, 内插图为FT变换图; (g) 1000 Pa样品的HAADF和EDS-mapping图

    Figure 5.  (a) Low-magnification HRTEM picture of 500 Pa sample and its inset SAED pattern; (b) high-magnification HRTEM picture of 500 Pa sample and its inset FT graph; (c), (d) enlarged images of d and e in Fig.5(b), FT-c and FT-d are FT graphs; (e) low-magnification HRTEM picture of 1000 Pa sample and its inset SAED pattern; (f) high-magnification HRTEM picture of 1000 Pa sample and its inset FT graph; (g) HAADF and EDS-mapping of 1000 Pa sample.

    图 6  (a) 未处理样品与不同气压下退火样品的XPS全谱图; (b) 样品的C 1s核心能级谱及其拟合曲线; (c) 样品表面C和O的原子百分比随退火气压变化图; (d), (e) 样品表面sp2 C, sp3 C, C—O键含量随退火气压变化图

    Figure 6.  (a) Full range XPS spectra of untreated sample and annealed samples at different air pressures; (b) C 1s core energy level spectra and their deconvolution of samples; (c) variation of atomic content of C and O on the sample surface with annealing air pressure; (d), (e) variation of sp2-C, sp3-C, C—O and C=O content of sample surface with annealing air pressure.

  • [1]

    Sildos I, Loot A, Kiisk V, Puust L, Hizhnyakov V, Yelisseyev A, Osvet A, Vlasov I, Kiisk V 2017 Diam. Relat. Mater. 76 27Google Scholar

    [2]

    Santacruz-Gomez Karla, Sarabia-Sainz Acosta-Elias M, Sarabia-Sainz M, Janetanakit Woraphong, Khosla Nathan, Melendrez R, Montero Martin Pedroza, Lal Ratnesh 2018 Nanotechnology 29 12.Google Scholar

    [3]

    Mochalin V N, Shenderova O, Ho D, Gogotsi Y 2012 Nat. Nanotechnol. 7 11Google Scholar

    [4]

    李莲莲, 陈冠钦 2022 金刚石与磨料磨具工程 42 543Google Scholar

    Li L L, Chen G Q 2022 Diam. Abras. Eng. 42 543Google Scholar

    [5]

    Bulut B, Gunduz O, Baydogan M, Kayali E S 2020 Int. J. Refract. Met. H. 95 105466Google Scholar

    [6]

    Chen C K, He Z, Xu A C, Hu X J 2021 Funct. Diam. 1 117Google Scholar

    [7]

    Chen C K, Mei Y S, Cui J, Xiao L, Jiang M Y, Lu S H, Hu X J 2018 Carbon 139 982Google Scholar

    [8]

    Li X, Chen H, Wang C C, Chen C K, Jiang M Y, Hu X J 2023 Diam. Relat. Mater. 136 109927Google Scholar

    [9]

    Chen P, Huang F, Yun S 2004 Mater. Res. Bull. 39 1589Google Scholar

    [10]

    Jenei Z, O'bannon E F, Weir S T, Cynn H, Lipp M J, Evans W J 2018 Nat. Commun. 9 3563Google Scholar

    [11]

    Xu X Y, Yu Z M, Zhu Y W, Wang B C 2005 J. Solid State Chem. 178 688Google Scholar

    [12]

    苗卫朋, 丁玉龙, 翟黎鹏, 包华 2019 金刚石与磨料磨具工程 39 18Google Scholar

    Miao W P, Ding Y L, Zhai L P, Bao H 2019 Diam. Abras. Eng. 39 18Google Scholar

    [13]

    Chen C, Fan D, Xu H, Jiang M, Li X, Lu S, Ke C, Hu X 2022 Carbon 196 466Google Scholar

    [14]

    Jiang M Y, Chen C K, Wang P, Guo D F, Han S J, Li X, Lu S H, Hu X J 2022 P. Natl. Acad. Sci. USA 119 e2201451119Google Scholar

    [15]

    Zhu Z G, Jiang C Q, Chen C K, Lu S H, Jiang M Y, Li X, Hu X J 2023 Carbon 211 118098Google Scholar

    [16]

    Bo Z, Mao S, Han Z J, Cen K F, Chen J H, Ostrikov K 2015 Chem. Soc. Rev. 44 2108Google Scholar

    [17]

    Cancado L G, Jorio A, Ferreira E H, Capaz R B, Moutinhc W V O, Ferrari A C 2012 Nano Lett. 11 3190Google Scholar

    [18]

    Shimada T, Sugai T, Fantini C , Souza M, Cancado L G 2005 Carbon 43 1049Google Scholar

    [19]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [20]

    Gilkes K, Sands H S, Batchelder D N, Robertson J, Milne W I 1997 Appl. Phys. Lett. 70 1980Google Scholar

    [21]

    Liu F B, Wang J D, Chen D R, Yan, D Y 2009 Chin. Phys. B 18 2041Google Scholar

    [22]

    Gnien D M 1999 Annu. Rev. Mater. Res. 29 211

  • [1] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [2] Chen Shan-Deng, Bai Qing-Shun, Dou Yu-Hao, Guo Wan-Min, Wang Hong-Fei, Du Yun-Long. Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary. Acta Physica Sinica, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [3] Jiang Mei-Yan, Wang Ping, Chen Ai-Sheng, Chen Cheng-Ke, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun. Preparation and electrochemical properties of nano-diamond/vertical graphene composite three-dimensional electrodes. Acta Physica Sinica, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [4] Dong Hui-Ying, Qin Xiao-Ru, Xue Wen-Rui, Cheng Xin, Li Ning, Li Chang-Yong. Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide. Acta Physica Sinica, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [5] Cheng Xin, Xue Wen-Rui, Wei Zhuang-Zhi, Dong Hui-Ying, Li Chang-Yong. Mode characteristic analysis of optical waveguides based on graphene-coated elliptical dielectric nanowire. Acta Physica Sinica, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [6] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [7] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [8] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [9] Wei Zhuang-Zhi, Xue Wen-Rui, Peng Yan-Ling, Cheng Xin, Li Chang-Yong. Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires. Acta Physica Sinica, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [10] Peng Yan-Ling, Xue Wen-Rui, Wei Zhuang-Zhi, Li Chang-Yong. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides. Acta Physica Sinica, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [11] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [12] Qin Shi-Rong, Zhao Qi, Cheng Zhen-Guo, Su Li-Xia, Shan Chong-Xin. Disintegration, functionalization and drug-delivery application of nanodiamond. Acta Physica Sinica, 2018, 67(16): 166801. doi: 10.7498/aps.67.20180862
    [13] Li Hao, Fu Zhi-Bing, Wang Hong-Bin, Yi Yong, Huang Wei, Zhang Ji-Cheng. Preperetions of bi-layer and multi-layer graphene on copper substrates by atmospheric pressure chemical vapor deposition and their mechanisms. Acta Physica Sinica, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [14] Gu Yun-Feng, Wu Xiao-Li, Wu Hong-Zhang. Ballistic thermal rectification in the three-terminal graphene nanojunction with asymmetric connection angles. Acta Physica Sinica, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [15] Liu Li-Shuang, Chou Xiu-Jian, Chen Tao, Sun Li-Ning. Effects of silver nanoparticles on Raman spectrum and fluorescence enhancement of nano-diamond. Acta Physica Sinica, 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [16] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. The influence of anharmonicity on the surface effect in nanodiamond. Acta Physica Sinica, 2012, 61(10): 106501. doi: 10.7498/aps.61.106501
    [19] Yang Yan-Ning, Zhang Zhi-Yong, Zhang Fu-Chun, Zhang Wei-Hu, Yan Jun-Feng, Zhai Chun-Xue. Temperature dependence of field emission of nano-diamond. Acta Physica Sinica, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [20] Sun Li-Tao, Gong Jin-Long, Zhu Zhi-Yuan, Zhu De-Zhang, He Sui-Xia, Wang Zhen-Xia. Plasma-induced transformation of carbon nanotubes to nanocrystalline diamond. Acta Physica Sinica, 2004, 53(10): 3467-3471. doi: 10.7498/aps.53.3467
Metrics
  • Abstract views:  859
  • PDF Downloads:  24
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2023
  • Accepted Date:  22 August 2023
  • Available Online:  14 October 2023
  • Published Online:  20 January 2024

/

返回文章
返回