搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯-纳米探针相互作用有限元准静态计算

张保磊 王家序 肖科 李俊阳

引用本文:
Citation:

石墨烯-纳米探针相互作用有限元准静态计算

张保磊, 王家序, 肖科, 李俊阳

Quasi-static finite element calculation of interaction between graphene and nanoprobe

Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang
PDF
导出引用
  • 纳米尺度探针是研究纳米薄膜材料的重要工具. 针对纳米探针和石墨烯相互作用有限元模型静态计算中难以收敛的困难,应用动态显式算法通过间歇式探针进给方式进行能量耗散,得出静态计算结果. 模型中界面作用力由界面黏结能和原子间作用势导出并植入Abaqus软件中界面作用子程序,实现对石墨烯、探针,基体系统内相互作用的仿真计算. 通过对比计算结果和实验数据,对实验结果给出了一致性解释.
    Probes of nano scale are a type of important tools for the study on nano-film material. Dynamic explicit method accompanied by the intermittent feeding of probe to dissipate the energy is applied to avoid the difficulty of convergence in the finite element model for a system of probe, graphene, and substrate. And the results of a static state are obtained from this strategy. The functions of interface interaction forces are deduced from adhesion energy and the potential between atoms. The force functions are implanted into subroutines in Abaqus code to simulate the interactions among graphene layers, probe, and substrate. Results of simulations show good consistency with the data of experiments.
    • 基金项目: 国家自然科学基金(批准号:51375506)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51375506).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Sci. 306 666

    [2]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I 2010 Nature Nanotech. 5 574

    [3]
    [4]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Sci. 327 662

    [5]
    [6]
    [7]

    Koenig S P, Wang L, Pellegrino J, Bunch J S 2012 Nature Nano. 7 728

    [8]

    Jiang D E, Cooper V R, Dai S 2009 Nano Lett. 9 4019

    [9]
    [10]
    [11]

    Han Y, Xu Z, Gao C 2013 Adv. Funct. Mater. 23 3693

    [12]
    [13]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458

    [14]
    [15]

    Bunch J, van der Zande A, Verbridge S, Frank I, Tanenbaum D, Parpia J, Craighead H, McEuen P 2007 Sci. 315 490

    [16]
    [17]

    Castro N A H, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [18]

    Novoselov K S, Morozov S V, Mohinddin T M G, Ponomarenko L A, Elias D C, Yang R, Barbolina I I, Blake P, Booth T J, Jiang D, Giesbers J, Hill E W, Geim A K 2007 Phys. Status. Solidi. B 244 4106

    [19]
    [20]
    [21]

    Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203

    [22]
    [23]

    Russo S, Oostinga J B, D Wehenkel, H B Heersche, S S Sobhani, L M K Vandersypen, A. F. Morpurgo 2007 e-print arXiv: 0711 1508

    [24]

    Cheianov V V, Fal'ko V I 2006 Phys. Rev. B 74 041403

    [25]
    [26]
    [27]

    Cheianov V V, V Fal'ko, Altshuler B L 2007 Sci. 315 1252

    [28]

    Ossipov A, Titov M, Beenakker C W J 2007 Phys. Rev. B 75 241401

    [29]
    [30]

    Qin M M, Ji W, Feng Y Y, Feng W 2014 Chin. Phys. B 23 028103

    [31]
    [32]
    [33]

    Zhang Y P, Yin Y H, L H H, Zhang H Y 2014 Chin. Phys. B 23 027202

    [34]
    [35]

    Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotechnol. 3 270

    [36]
    [37]

    Robinson J T, Perkins F K, Snow E S, Wei Z, Sheehan P E 2008 Nano. Lett. 8 3137

    [38]
    [39]

    Robinson J T, Zalalutdinov M, Baldwin J W, Snow E S, Wei Z, Sheehan P, Houston B H 2008 Nano Lett. 8 441

    [40]
    [41]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nat. 442 282

    [42]

    Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J 2008 AdV. Funct. Mater 18 1518

    [43]
    [44]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Sci. 306 666

    [45]
    [46]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nat. 442 282

    [47]
    [48]
    [49]

    Hou H P, Xie Y E, Chen Y P, Ou Y T, Ge Q X, Zhong J X 2013 Chin. Phys. B 22 087303

    [50]
    [51]

    Gao T H 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 物理学报 63 046102]

    [52]
    [53]

    Hui Z X, He P F, Dai Y, Wu A H 2014 Acta. Phys. Sin. 63 074401 (in Chinese) [惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401]

    [54]

    Yang J S, Huang D H, Cao Q L, Li Q, Wang L Z, Wang F H 2013 Chin. Phys. B 22 098101

    [55]
    [56]
    [57]

    Huang L, Xu W Y, Que Y D, Mao J H, Meng L, Pan L D, Li G, Wang Y L Du, S X, Liu Y Q, Gao H J 2013 Chin. Phys. B 22 096803

    [58]
    [59]

    Li Z J, Li Q, Cheng Z G, Li H B, Fang Y 2014 Chin. Phys. B 23 028102

    [60]
    [61]

    Huang W B, Wang G L, Gao F Q, Qiao Z T, Wang G, Chen M J, Tao L, Deng Y, Sun L F 2014 Chin. Phys. B 23 046802

    [62]

    Han T W, He P F 2010 Acta. Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [63]
    [64]

    Shin Y J, Stromberg R, Nay R, Huang H, Wee A T S, Yang H, Bhatia C S 2011 Carbon 49 4070

    [65]
    [66]

    Kim K S, Lee H J, Lee C, Lee S K, Jang H, Ahn J H, Kim J H, Lee H J 2011 ACS Nano 5 5107

    [67]
    [68]
    [69]

    Lee C, Wei X, Kysar J, Hone J 2008 Sci. 321 385

    [70]

    Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J 2013 Sci. 340 1073

    [71]
    [72]

    Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K, Bennewitz R 2009 Phys. Rev. Lett. 102 086102

    [73]
    [74]
    [75]

    Lee C, Li Q, Kalb W, Liu X, Berger H, R W Carpick, Hone J 2010 Sci. 328 76

    [76]

    B I Yakobson, C J Brabec, J Bernholc 1996 Phys. Rev. Lett. 76 14

    [77]
    [78]
    [79]

    Jacobs T D B, Ryan K E, Keating P L, Grierson D S, Lefever J A, Turner K T, Harrison J A, Carpick R W 2013 Tribol. Lett. 50 81

    [80]

    Staszczuk P, Janczuk B, Chibowski E 1985 Mater. Chem. Phys. 12 469

    [81]
    [82]
    [83]
    [84]
    [85]
    [86]
    [87]
    [88]
    [89]
    [90]
    [91]
    [92]
    [93]
    [94]
    [95]
    [96]
    [97]
    [98]
    [99]
    [100]
    [101]
    [102]
    [103]
    [104]
    [105]
    [106]
    [107]
    [108]
    [109]
    [110]
    [111]
    [112]
    [113]
    [114]
    [115]
    [116]
    [117]
    [118]
    [119]
    [120]
    [121]
    [122]
    [123]
    [124]
    [125]
    [126]
    [127]
    [128]
    [129]
    [130]
    [131]
    [132]
    [133]
    [134]
    [135]
    [136]
    [137]
    [138]
    [139]
    [140]
    [141]
    [142]
    [143]
    [144]
    [145]
    [146]
    [147]
    [148]
    [149]
    [150]
    [151]
    [152]
    [153]
    [154]
    [155]
    [156]
    [157]
    [158]
    [159]
    [160]
    [161]
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Sci. 306 666

    [2]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I 2010 Nature Nanotech. 5 574

    [3]
    [4]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Sci. 327 662

    [5]
    [6]
    [7]

    Koenig S P, Wang L, Pellegrino J, Bunch J S 2012 Nature Nano. 7 728

    [8]

    Jiang D E, Cooper V R, Dai S 2009 Nano Lett. 9 4019

    [9]
    [10]
    [11]

    Han Y, Xu Z, Gao C 2013 Adv. Funct. Mater. 23 3693

    [12]
    [13]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458

    [14]
    [15]

    Bunch J, van der Zande A, Verbridge S, Frank I, Tanenbaum D, Parpia J, Craighead H, McEuen P 2007 Sci. 315 490

    [16]
    [17]

    Castro N A H, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [18]

    Novoselov K S, Morozov S V, Mohinddin T M G, Ponomarenko L A, Elias D C, Yang R, Barbolina I I, Blake P, Booth T J, Jiang D, Giesbers J, Hill E W, Geim A K 2007 Phys. Status. Solidi. B 244 4106

    [19]
    [20]
    [21]

    Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203

    [22]
    [23]

    Russo S, Oostinga J B, D Wehenkel, H B Heersche, S S Sobhani, L M K Vandersypen, A. F. Morpurgo 2007 e-print arXiv: 0711 1508

    [24]

    Cheianov V V, Fal'ko V I 2006 Phys. Rev. B 74 041403

    [25]
    [26]
    [27]

    Cheianov V V, V Fal'ko, Altshuler B L 2007 Sci. 315 1252

    [28]

    Ossipov A, Titov M, Beenakker C W J 2007 Phys. Rev. B 75 241401

    [29]
    [30]

    Qin M M, Ji W, Feng Y Y, Feng W 2014 Chin. Phys. B 23 028103

    [31]
    [32]
    [33]

    Zhang Y P, Yin Y H, L H H, Zhang H Y 2014 Chin. Phys. B 23 027202

    [34]
    [35]

    Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotechnol. 3 270

    [36]
    [37]

    Robinson J T, Perkins F K, Snow E S, Wei Z, Sheehan P E 2008 Nano. Lett. 8 3137

    [38]
    [39]

    Robinson J T, Zalalutdinov M, Baldwin J W, Snow E S, Wei Z, Sheehan P, Houston B H 2008 Nano Lett. 8 441

    [40]
    [41]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nat. 442 282

    [42]

    Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J 2008 AdV. Funct. Mater 18 1518

    [43]
    [44]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Sci. 306 666

    [45]
    [46]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nat. 442 282

    [47]
    [48]
    [49]

    Hou H P, Xie Y E, Chen Y P, Ou Y T, Ge Q X, Zhong J X 2013 Chin. Phys. B 22 087303

    [50]
    [51]

    Gao T H 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 物理学报 63 046102]

    [52]
    [53]

    Hui Z X, He P F, Dai Y, Wu A H 2014 Acta. Phys. Sin. 63 074401 (in Chinese) [惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401]

    [54]

    Yang J S, Huang D H, Cao Q L, Li Q, Wang L Z, Wang F H 2013 Chin. Phys. B 22 098101

    [55]
    [56]
    [57]

    Huang L, Xu W Y, Que Y D, Mao J H, Meng L, Pan L D, Li G, Wang Y L Du, S X, Liu Y Q, Gao H J 2013 Chin. Phys. B 22 096803

    [58]
    [59]

    Li Z J, Li Q, Cheng Z G, Li H B, Fang Y 2014 Chin. Phys. B 23 028102

    [60]
    [61]

    Huang W B, Wang G L, Gao F Q, Qiao Z T, Wang G, Chen M J, Tao L, Deng Y, Sun L F 2014 Chin. Phys. B 23 046802

    [62]

    Han T W, He P F 2010 Acta. Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [63]
    [64]

    Shin Y J, Stromberg R, Nay R, Huang H, Wee A T S, Yang H, Bhatia C S 2011 Carbon 49 4070

    [65]
    [66]

    Kim K S, Lee H J, Lee C, Lee S K, Jang H, Ahn J H, Kim J H, Lee H J 2011 ACS Nano 5 5107

    [67]
    [68]
    [69]

    Lee C, Wei X, Kysar J, Hone J 2008 Sci. 321 385

    [70]

    Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J 2013 Sci. 340 1073

    [71]
    [72]

    Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K, Bennewitz R 2009 Phys. Rev. Lett. 102 086102

    [73]
    [74]
    [75]

    Lee C, Li Q, Kalb W, Liu X, Berger H, R W Carpick, Hone J 2010 Sci. 328 76

    [76]

    B I Yakobson, C J Brabec, J Bernholc 1996 Phys. Rev. Lett. 76 14

    [77]
    [78]
    [79]

    Jacobs T D B, Ryan K E, Keating P L, Grierson D S, Lefever J A, Turner K T, Harrison J A, Carpick R W 2013 Tribol. Lett. 50 81

    [80]

    Staszczuk P, Janczuk B, Chibowski E 1985 Mater. Chem. Phys. 12 469

    [81]
    [82]
    [83]
    [84]
    [85]
    [86]
    [87]
    [88]
    [89]
    [90]
    [91]
    [92]
    [93]
    [94]
    [95]
    [96]
    [97]
    [98]
    [99]
    [100]
    [101]
    [102]
    [103]
    [104]
    [105]
    [106]
    [107]
    [108]
    [109]
    [110]
    [111]
    [112]
    [113]
    [114]
    [115]
    [116]
    [117]
    [118]
    [119]
    [120]
    [121]
    [122]
    [123]
    [124]
    [125]
    [126]
    [127]
    [128]
    [129]
    [130]
    [131]
    [132]
    [133]
    [134]
    [135]
    [136]
    [137]
    [138]
    [139]
    [140]
    [141]
    [142]
    [143]
    [144]
    [145]
    [146]
    [147]
    [148]
    [149]
    [150]
    [151]
    [152]
    [153]
    [154]
    [155]
    [156]
    [157]
    [158]
    [159]
    [160]
    [161]
  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 郝鹏, 张丽丽, 丁明明. 高分子囊泡在微管流中惯性迁移现象的有限元分析. 物理学报, 2022, 71(18): 188701. doi: 10.7498/aps.71.20220606
    [3] 白占斌, 王锐, 周亚洲, 吴天如, 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋-轨道相互作用. 物理学报, 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [4] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为. 物理学报, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [5] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [6] 白占斌, 王锐, 周亚洲, Tianru Wu(吴天如), 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋轨道相互作用. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211815
    [7] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [8] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [10] 王飞, 魏兵. 含石墨烯分界面有耗分层介质的传播矩阵. 物理学报, 2019, 68(24): 244101. doi: 10.7498/aps.68.20190823
    [11] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [12] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [13] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算. 物理学报, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [14] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究. 物理学报, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [15] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [16] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质. 物理学报, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [17] 孙素蓉, 王海兴. 惰性气体原子间相互作用势比较研究. 物理学报, 2015, 64(14): 143401. doi: 10.7498/aps.64.143401
    [18] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [19] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究. 物理学报, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [20] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
计量
  • 文章访问数:  5087
  • PDF下载量:  440
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-17
  • 修回日期:  2014-03-05
  • 刊出日期:  2014-08-05

/

返回文章
返回