Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of evaporation ablation dynamics of materials by nanosecond pulse laser of Gaussian beam and flat-top beam

Yin Pei-Qi Xu Bo-Ping Liu Ying-Hua Wang Yi-Shan Zhao Wei Tang Jie

Citation:

Simulation of evaporation ablation dynamics of materials by nanosecond pulse laser of Gaussian beam and flat-top beam

Yin Pei-Qi, Xu Bo-Ping, Liu Ying-Hua, Wang Yi-Shan, Zhao Wei, Tang Jie
PDF
HTML
Get Citation
  • Based on the established two-dimensional asymmetric model of the interaction between a nanosecond pulse laser and metallic aluminum, the effect of beam shaping on the evaporation ablation dynamics during the ablation of metallic aluminum by a nanosecond pulse laser is simulated. The results show that plasma shielding, which has a significant influence on the ablation properties of the target, occurs mainly in the middle phase and late phase of the pulse. Among the three laser profiles, the Gaussian beam has the strongest shielding effect. As the diameter of the reshaped flat-top beam increases, the shielding effect gradually weakens. The two-dimensional spatial distribution of target temperature is relatively different between ablation by a Gaussian beam and that by a flat-top beam. For the Gaussian beam, the center of the target is first heated, and then the temperature spreads in radial direction and axial direction. For the flat-top beam, due to the uniform energy distribution, the target is heated within a certain radial range simultaneously. Beam shaping has a great influence on the evaporation ablation dynamics of the target. For the Gaussian beam, the center of the target is first ablated, followed by the radial ablation. For the flat-top beam, the evaporation time of the target surface is delayed due to the lower energy density after the beam has been shaped. In addition, the target evaporates simultaneously in a certain radial range due to the more uniform distribution of laser energy. For each of the three laser profiles, the evaporation morphology of the target resembles the intensity distribution of the laser beam. The crater produced by the Gaussian beam is deep in the center and shallow on both sides, while it becomes relatively flat by the flat-top beam.
  • 图 1  (a)平顶光束与铝靶相互作用示意图; (b)整形前后归一化激光强度; (c)激光光束轮廓; (d)几何模型和网格划分

    Figure 1.  (a) Schematics of the flat-top beam laser interaction with aluminum target; (b) normalized laser intensity before and after beam shaping; (c) laser beam profiles; (d) geometric model and mesh generation.

    图 2  不同激光通量下铝材料烧蚀深度的仿真结果和实验结果[46]对比

    Figure 2.  Comparison of the ablation depth of aluminum with different laser fluences between simulation results and experimental results[46].

    图 3  等离子体屏蔽前后到达靶面的激光脉冲归一化强度的时间分布

    Figure 3.  Temporal profile of the normalized intensity of laser pulse reaching the target surface before and after the plasma shielding.

    图 4  F = 20 J/cm 2, 靶面中心温度随时间的演化

    Figure 4.  Time evolution of target surface center temperature for laser fluence of 20 J/cm2.

    图 5  F= 20 J/cm 2, 考虑等离子体屏蔽时, 不同时刻的靶材温度分布 (a)—(e)高斯光束烧蚀结果; (f)—(j)平顶光束$ \left( {{r_1} = 1.2{\omega _0}} \right) $烧蚀结果; 其中, (a), (f)代表靶材蒸发开始时刻; (b), (g)代表高温开始时刻; (c), (h)代表高温结束时刻; (d), (i)代表靶材蒸发结束时刻; (e), (j)代表靶材仿真结束时刻

    Figure 5.  Temperature distribution of the target for laser fluence of 20 J/cm2 with considering the plasma shielding: (a)–(e) Gaussian beam ablation results; (f)–(j) flat-top beam ablation results; (a), (f) the initial time of evaporation; (b), (g) the initial time of high temperature; (c), (h) the end time of high temperature; (d), (i) the end time of evaporation; (e), (j) the end time of simulation.

    图 6  F = 20 J/cm 2, 靶面中心处蒸发烧蚀速度和蒸发烧蚀深度随时间的演化 (a)烧蚀速度; (b)烧蚀深度

    Figure 6.  Time evolution of target surface center ablation velocity and ablation depth due to vaporization for laser fluence of 20 J/cm2: (a) Ablation velocity; (b) ablation depth.

    图 7  F = 20 J/cm2, 靶材蒸发烧蚀坑形貌和总烧蚀深度 (a)实时蒸发形貌; (b)最终蒸发形貌; (c)总烧蚀深度

    Figure 7.  Target ablation crater morphology due to vaporization and total ablation depth for laser fluence of 20 J/cm2: (a) The real-time morphology due to vaporization; (b) the final morphology due to vaporization; (c) total ablation depth.

    表 1  温度依赖的铝材料参数[25,4143]

    Table 1.  Temperature dependent aluminum material parameters[25,4143].

    参数 数值 单位
    密度
    ($\rho $)
    $ \rho = \left\{ {\begin{aligned} &{2700, }&&{T \leqslant {T_{\text{m}}}} \\ & {{\rho _{\text{c}}}\left[ {1 + 0.75\left( {1 - {T / {{T_{\text{c}}}}}} \right) + 3{{\left( {1 - {T / {{T_{\text{c}}}}}} \right)}^{{1/3}}}} \right], }&&{{T_{\text{m}}} < T \leqslant {0}{.8}{T_{\text{c}}}} \\ &{634, }&&{T > {0}{.8}{T_{\text{c}}}} \end{aligned}} \right. $ $ {{{\text{kg}}} \mathord{\left/ {\vphantom {{{\text{kg}}} {{{\text{m}}^{3}}}}} \right. } {{{\text{m}}^{3}}}} $
    电导率
    ($\sigma $)
    $ \sigma \left( T \right) = \left\{ {\begin{aligned} &{3.69 \times {{10}^7}, }&&{T \leqslant {T_{\text{m}}}} \\ & {{{{{10}^8}} / {\left( {0.00852 T + 15.32896} \right), }}}&&{{T_{\text{m}}} < T \leqslant {0}{.8}{T_{\text{c}}}} \\ &{2.52 \times {{10}^4}, }&&{T > {0}{.8}{T_{\text{c}}}} \end{aligned}} \right. $ $ {{\text{S}} \mathord{\left/ {\vphantom {{\text{S}} {\text{m}}}} \right. } {\text{m}}} $
    热导率
    ($k$)
    $ k\left( T \right) = \left\{ {\begin{aligned}& {237, }&&{T \leqslant {T_{\text{m}}}} \\ &{2.44 \times {{10}^{ - 8}}\sigma \left( T \right)T, }&&{T > {T_{\text{m}}}} \end{aligned}} \right. $ $ {{\text{W}} \mathord{\left/ {\vphantom {{\text{W}} {{\text{(m}} \cdot {\text{K)}}}}} \right. } {{\text{(m}} \cdot {\text{K)}}}} $
    反射率
    ($R$)
    $ R = \left\{ {\begin{aligned} &{95{\text{%}} , }&&{T \leqslant {T_{\text{m}}}} \\ &{\frac{{{{\left[ {{n_{\text{R}}}\left( T \right) - 1} \right]}^2} + n_{\text{I}}^{2}\left( T \right)}}{{{{\left[ {{n_{\text{R}}}\left( T \right) + 1} \right]}^2} + n_{\text{I}}^{2}\left( T \right)}}, }&&{{T_{\text{m}}} < T \leqslant {0}{.8}{T_{\text{c}}}} \\ &{{\text{69{\text{%}} , }}}&&{T > {0}{.8}{T_{\text{c}}}} \end{aligned}} \right. $ $1$
    吸收系数
    ($\alpha $)
    $ \alpha = \left\{ {\begin{aligned} &{1.5 \times {{10}^8}, }&&{T < {T_{\text{m}}}} \\ & {{{4{\text{π }}} / {(\lambda }}{n_{\text{I}}}\left( T \right)), }&&{{T_{\text{m}}} \leqslant T \leqslant {0}{.8}{T_{\text{c}}}} \\ & {8.5 \times {{10}^6}, }&&{T > {0}{.8}{T_{\text{c}}}} \end{aligned}} \right. $ ${{\text{m}}^{{{ - 1}}}}$
    注: ${n_{\text{R}}}$和${n_{\text{I}}}$分别代表折射率的实部和虚部
    DownLoad: CSV

    表 2  铝材料的热学常数[27,41,44,45]

    Table 2.  Thermal constants for aluminum materials[27,41,44,45].

    参数 符号 数值 单位
    固相线温度 ${T_{\text{s}}}$ 936.15 K
    液相线温度 ${T_{\text{l}}}$ 939.15 K
    熔点 ${T_{\text{m}}}$ 933 K
    沸点 ${T_{\text{v}}}$ 2793 K
    临界温度 ${T_{\text{c}}}$ 6700 K
    临界密度 ${\rho _{\text{c}}}$ 634 ${{{\text{kg}}} / {{{\text{m}}^{3}}}}$
    固相恒压热容 ${C_{{\text{ps}}}}$ 917 $ {{\text{J}} / {\left( {{\text{kg}} \cdot {\text{K}}} \right)}} $
    液相恒压热容 ${C_{{\text{pl}}}}$ 1080 $ {{\text{J}} /{\left( {{\text{kg}} \cdot {\text{K}}} \right)}} $
    融化潜热 ${L_{\text{m}}}$ $ 3.69 \times {10^{5}} $ $ {{\text{J}} /{{\text{kg}}}} $
    蒸发潜热 ${L_{\text{v}}}$ $ {1}{.05} \times {10^{7}} $ $ {{\text{J}} /{{\text{kg}}}} $
    DownLoad: CSV
  • [1]

    Schaffer C B, Brodeur A, Mazur E 2001 Meas. Sci. Technol. 12 1784Google Scholar

    [2]

    Hahn D W, Omenetto N 2012 Appl. Spectrosc. 66 347Google Scholar

    [3]

    Baudelet M, Yu J, Bossu M, Jovelet J, Wolf J P, Amodeo T, Fréjafon E, Laloi P 2006 Appl. Phys. Lett. 89 163903Google Scholar

    [4]

    董鹏凯, 赵上勇, 郑柯鑫, 王冀, 高勋, 郝作强, 林景全 2012物理学报 70 040201

    Dong K P, Zhao S Y, Zheng K X, Wang J, Gao X, Hao Z Q, Lin J Q 2021 Acta Phys. Sin. 70 040201

    [5]

    黄梅婷, 姜银花, 陈钰琦, 李润华 2021 物理学报 70 104206Google Scholar

    Huang M T, Jiang Y H, Chen Y Q, Li R H 2021 Acta Phys. Sin. 70 104206Google Scholar

    [6]

    Lithgow G A, Robinson A L, Buckley S G 2004 Atmos. Environ. 38 3319Google Scholar

    [7]

    Burgio L, Melessanaki K, Doulgeridis M, Clark R J H, Anglos D 2001 Spectrochim. Acta Part B 56 905Google Scholar

    [8]

    Tiwari M, Agrawal R, Pathak A K, Rai A K, Rai G K 2013 Spectrosc. Lett. 46 155Google Scholar

    [9]

    张大成, 马新文, 朱小龙, 李斌, 祖凯玲 2008 物理学报 57 6348Google Scholar

    Zhang D C, Ma X W, Zhu X L, Li B, Zu K L 2008 Acta Phys. Sin. 57 6348Google Scholar

    [10]

    Rai N K, Rai A K 2008 J. Hazard. Mater. 150 835Google Scholar

    [11]

    Jia J W, Fu H B, Hou Z Y, Wang H D, Ni Z B, Wang Z, Dong F Z, Zhang Z R 2019 J. Phys. D: Appl. Phys. 52 405102

    [12]

    Jia J W, Fu H B, Hou Z Y, Wang H D, Wang Z, Dong F Z, Ni Z B, Zhang Z R 2020 Spectrochim. Acta Part B 163 105747Google Scholar

    [13]

    Hou Z Y, Afgan M S, Sheta S, Wang Z 2020 J. Anal. At. Spectrom. 35 1671Google Scholar

    [14]

    Ji J X, Song W R, Hou Z Y, Li L, Yu X, W Z 2022 Anal. Chim. Acta 1235 340551Google Scholar

    [15]

    Knight C J 1979 AIAA J. 17 519Google Scholar

    [16]

    Mazhukin V I, Nossov V V, Smurov I 2004 Thin Solid Films 453 353

    [17]

    Stafe M, Negutu C, Popescu I M 2007 Appl. Surf. Sci. 253 6353

    [18]

    Lu Q, Mao S S, Mao X, Russo R E 2008 J. Appl. Phys. 104 1695

    [19]

    Zhang W, Yao Y L, Chen K 2001 Int. J. Adv. Manuf. Technol. 18 323

    [20]

    Kelly R, Miotello A 1996 Appl. Surf. Sci. 96 205

    [21]

    Porneala C, Willis D A 2006 Int. J. Heat Mass Transfer 49 1928Google Scholar

    [22]

    Pierron N, Sallamand P, Matteï S 2007 Appl. Surf. Sci. 253 3208Google Scholar

    [23]

    Korobenko V N, Rakhel A D, Savvatimski A I, Fortov, V. E 2005 Phys. Rev. B 71 014208Google Scholar

    [24]

    Wu B, Shin Y C 2006 Appl. Phys. Lett. 89 111902Google Scholar

    [25]

    Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304Google Scholar

    [26]

    Lutey, Adrian A H 2013 J. Manuf. Sci. Eng. 135 061003Google Scholar

    [27]

    Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273Google Scholar

    [28]

    Stafe M 2012 J. Appl. Phys. 112 311

    [29]

    Bogaerts A, Chen Z, Gijbels R, Vertes A 2003 Spectrochim. Acta Part B 58 1867Google Scholar

    [30]

    Nosrati Y, Tavassoli S H, Hassanimatin M M, Safi A 2020 Phys. Plasmas 27 023301Google Scholar

    [31]

    Zhang Y, Zhang D X, Wu J J, He Z, Deng X 2017 AIP Adv. 7 075010Google Scholar

    [32]

    Ghalamdaran S, Parvin P, Javad Torkamany M, Sabbagh Zadeh J 2014 J. Laser Appl. 26 012009Google Scholar

    [33]

    Wang Y, Hahn D W 2019 Appl. Phys. A 125 1Google Scholar

    [34]

    Sinha S 2010 J. Nucl. Mater. 396 257Google Scholar

    [35]

    Yu J, Ma Q L, Motto-Ros V, Lei W Q, Wang X C, Bai X S 2012 Front. Phys. 7 649Google Scholar

    [36]

    Kumar K K, Samuel G L, Shunmugam M S 2019 J. Mater. Process. Technol. 263 266Google Scholar

    [37]

    Zhang C, Zhou J, Shen H 2017 Trans. ASME Ser. B 139 041019

    [38]

    Bulgakova N M, Bulgakov A V 2001 Appl. Phys. A 73 199Google Scholar

    [39]

    Sakai T 2009 J. Propul. Power 25 406Google Scholar

    [40]

    Lee J, Yoo J, Lee K 2014 J. Mech. Sci. Technol. 28 1797Google Scholar

    [41]

    Terragni J, Miotello A 2021 Micromachines 12 300Google Scholar

    [42]

    Stafe M 2012 J. Appl. Phys. 112 123112Google Scholar

    [43]

    Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429Google Scholar

    [44]

    Morel V, Bultel A, Chéron B G 2009 Int. J. Thermophys. 30 1853Google Scholar

    [45]

    Shen Z H, Zhang S Y, Lu J, Ni X W 2001 Opt. Laser Technol. 33 533Google Scholar

    [46]

    Porneala C, Willis D A 2006 Appl. Phys. Lett. 89 21

  • [1] Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie. Study on the influence of surface ablation on plasma and its interaction with electromagnetic field. Acta Physica Sinica, doi: 10.7498/aps.73.20231733
    [2] Fan Hai-Ling, Guo Zhi-Jian, Li Ming-Qiang, Zhuo Hong-Bin. Numerical study of self-focusing and filament formation of intense vortex beams in plasmas. Acta Physica Sinica, doi: 10.7498/aps.72.20221232
    [3] Li Xiang-Fu, Zhu Xiao-Lu, Jiang Gang. Plasma screening effect on electron-electron interactions. Acta Physica Sinica, doi: 10.7498/aps.72.20222339
    [4] Tan Sheng, Wu Jian-Jun, Huang Qiang, Zhang Yu, Du Xin-Ru. A model of femtosecond laser ablation of metal based on dual-phase-lag model. Acta Physica Sinica, doi: 10.7498/aps.68.20182099
    [5] Cai Song, Chen Gen-Yu, Zhou Cong, Zhou Feng-Lin, Li Guang. Research and application of plasma recoil pressure physical model for pulsed laser ablation material. Acta Physica Sinica, doi: 10.7498/aps.66.134205
    [6] He Jie-Ling, Wei Ling, Yang Jin-Sheng, Li Xi-Qi, He Yi, Zhang Yu-Dong. Influence of pupil on the laser beam shaping system by pure phase modulation. Acta Physica Sinica, doi: 10.7498/aps.65.048701
    [7] Yan Feng-Ping, Liu Peng, Tan Zhong-Wei, Tao Pei-Lin, Li Qi, Peng Wan-Jing, Feng Ting, Tan Si-Yu. A novel method of improving coupling effiency of laser diode based on synthesized lens with graduaed index fiber. Acta Physica Sinica, doi: 10.7498/aps.61.164202
    [8] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, doi: 10.7498/aps.60.025203
    [9] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, doi: 10.7498/aps.58.363
    [10] Ding Ding, He Bin, Liu Ling, Zhang Cheng-Hua, Wang Jian-Guo. Plasma screening effect on the differential cross sections of collision ionization of H by He2+. Acta Physica Sinica, doi: 10.7498/aps.58.8419
    [11] Li Bo-Wen, Jiang Jun, Dong Chen-Zhong, Wang Jian-Guo, Ding Xiao-Bin. Influence of plasma effect on the energy levels and transition probabilities of hydrogen-like ions. Acta Physica Sinica, doi: 10.7498/aps.58.5274
    [12] Luan Shi-Xia, Zhang Qiu-Ju, Gui Wei-Ling. Plasma Bragg gratings generated by the interaction of two counter-propagating laser pulses with plasmas. Acta Physica Sinica, doi: 10.7498/aps.57.7030
    [13] Li Jian-Long, Lü Bai-Da. Optimized design of phase plates for shaping partially coherent beams based on the adaptive genetic algorithm. Acta Physica Sinica, doi: 10.7498/aps.57.3006
    [14] Li Yong-Qiang, Wu Jian-Hua, Yuan Jian-Min. Influence of Debye-screening on atomic energy levels and oscillator strengths. Acta Physica Sinica, doi: 10.7498/aps.57.4042
    [15] Zhang Yi, Li Yu-Tong, Zhang Jie, Chen Zheng-Lin, Kodama R.. Calculation of neutron spectrum in ultraintense laser-plasmas interactions. Acta Physica Sinica, doi: 10.7498/aps.54.4799
    [16] Liu Ming-Wei, Guo Hong, Deng Dong-Mei, Zhang Yu, Chen Xu-Zong. Variational method in the study of intense laser beams propagation in plasma channels. Acta Physica Sinica, doi: 10.7498/aps.53.1419
    [17] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, doi: 10.7498/aps.50.1512
    [18] JI YANG, ZHANG JING-JUAN, YAO DE-CHENG, CHEN YAN-SONG. DIODE-LASER BEAM CONVERSION WITH DIFFRACTIVE OPTICAL ELEMENTS. Acta Physica Sinica, doi: 10.7498/aps.45.2027
    [19] ZHANG JING-JUAN, JI YANG, YAO DE-CHENG, CHEN JUN-BEN. APLLICATION OF GENETIC ALGORITHM TO LASER BEAM RESHAPING. Acta Physica Sinica, doi: 10.7498/aps.45.789
    [20] XU ZHI-ZHAN, LI AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, BI WU-JI, HOU SHING-FA, YIN GUANG-YU, ZHANG SHU-GAN, PAN CHENG-MING. INVESTIGATION OF LASER HEATING OF PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.30.1077
Metrics
  • Abstract views:  187
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  08 October 2023
  • Accepted Date:  04 March 2024
  • Available Online:  20 March 2024

/

返回文章
返回