Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dielectric materials for high-performance triboelectric nanogenerators

Deng Hao-Cheng Li Yi Tian Shuang-Shuang Zhang Xiao-Xing Xiao Song

Citation:

Dielectric materials for high-performance triboelectric nanogenerators

Deng Hao-Cheng, Li Yi, Tian Shuang-Shuang, Zhang Xiao-Xing, Xiao Song
PDF
HTML
Get Citation
  • Triboelectric nanogenerator (TENG), as a micro-nano power source or self-powered sensor, has shown great prospects in various industries in recent years. The TENG output performance is closely related to the contact electrification characteristics of the triboelectric dielectric material. Herein, we first introduce the relevant fundamental theory and models of TENG and tribo-dielectrics. Then, we introduce the material selection, modification method (including surface modification and bulk modification) and structural design strategy of TENG dielectric material. Surface and bulk modification mainly involve surface roughness control, surface functional group regulation, and optimization of dielectric parameters. In terms of dielectric structural design, the principle of charge transport, trapping, and blocking layers as well as typical techniques to improve the dielectric properties of TENGs through multi-layer structures are highlighted. Finally, challenges and directions for future research are discussed, which is conducive to the fabricating of high-performance TENG dielectric materials.
      Corresponding author: Xiao Song, xiaosong@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52207169).
    [1]

    Fan F R, Tian Z Q, Lin Wang Z 2012 Nano Energy 1 328Google Scholar

    [2]

    Kim W G, Kim D W, Tcho I W, Kim J K, Kim M S, Choi Y K 2021 ACS Nano 15 258Google Scholar

    [3]

    Chang A, Uy C, Xiao X, Xiao X, Chen J 2022 Nano Energy 98 107282Google Scholar

    [4]

    Wang Z L 2021 Rep. Prog. Phys. 84 096502Google Scholar

    [5]

    Deng H C, Xiao S, Yang A J, Wu H Y, Tang J, Zhang X X, Li Y 2023 Nano Energy 115 108738Google Scholar

    [6]

    Fan Y Y, Zhang L, Li D C, Wang Z L 2023 Nano Energy 118 108959Google Scholar

    [7]

    Chen G, Wang J, Xu G Q, Fu J J, Gani A B, Dai J H, Guan D, Tu Y P, Li C Y, Zi Y L 2023 EcoMat 5 e12410Google Scholar

    [8]

    Liang Y, Xu X Y, Zhao L B, Lei C Y, Dai K J, Zhuo R, Fan B B, Cheng E, Hassan M A, Gao L X, Mu X J, Hu N, Zhang C 2023 Small 2308469Google Scholar

    [9]

    Zhou L L, Liu D, Wang J, Wang Z L 2020 Friction 8 481Google Scholar

    [10]

    Jiang F, Zhan L X, Lee J P, Lee P S 2023 Adv. Mater. 36 2308197

    [11]

    Liu Y H, Mo J L, Fu Q, Lu Y X, Zhang N, Wang S F, Nie S X 2020 Adv. Funct. Mater. 30 2004714Google Scholar

    [12]

    Tao X L, Chen X, Wang Z L 2023 Energy Environ. Sci. 16 3654Google Scholar

    [13]

    Ahn J, Zhao Z J, Choi J, Jeong Y, Hwang S, Ko J, Gu J, Jeon S, Park J, Kang M, Del Orbe D V, Cho I, Kang H, Bok M, Jeong J H, Park I 2021 Nano Energy 85 105978Google Scholar

    [14]

    Shin S H, Bae Y E, Moon H K, Kim J, Choi S H, Kim Y, Yoon H J, Lee M H, Nah J 2017 ACS Nano 11 6131Google Scholar

    [15]

    Bharti D K, Veeralingam S, Badhulika S 2022 Mater. Horiz. 9 663Google Scholar

    [16]

    Peng Z H, Xiao X, Song J X, Libanori A, Lee C, Chen K, Gao Y, Fang Y S, Wang J, Wang Z K, Chen J, Leung M K H 2022 ACS Nano 16 20251Google Scholar

    [17]

    Cui N Y, Liu J M, Lei Y M, Gu L, Xu Q, Liu S H, Qin Y 2018 ACS Appl. Energy Mater. 1 2891Google Scholar

    [18]

    Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar

    [19]

    Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339Google Scholar

    [20]

    Wang S H, Lin L, Xie Y N, Jing Q S, Niu S M, Wang Z L 2013 Nano Lett. 13 2226Google Scholar

    [21]

    Mallineni S S K, Behlow H, Dong Y, Bhattacharya S, Rao A M, Podila R 2017 Nano Energy 35 263Google Scholar

    [22]

    Niu S, Wang Z L 2015 Nano Energy 14 161Google Scholar

    [23]

    Liu D, Zhou L L, Cui S N, Gao Y K, Li S X, Zhao Z H, Yi Z Y, Zou H Y, Fan Y J, Wang J, Wang Z L 2022 Nat. Commun. 13 6019Google Scholar

    [24]

    Wang H B, Huang S Y, Kuang H Z, Zhang C, Liu Y L, Zhang K H, Cai X Y, Wang X Z, Luo J K, Wang Z L 2023 Adv. Energy Mater. 13 2300529Google Scholar

    [25]

    Wang S J, Luo Z, Liang J J, Hu J, Jiang N S, He J L, Li Q 2022 ACS Nano 16 13612Google Scholar

    [26]

    Khandelwal G, Maria Joseph Raj N P, Kim S 2021 Adv. Energy Mater. 11 2101170Google Scholar

    [27]

    Wang Z L, Wang A C 2019 Mater. Today 30 34Google Scholar

    [28]

    Kim M P, Um D S, Shin Y E, Ko H 2021 Nanoscale Res. Lett. 16 35Google Scholar

    [29]

    Liu Z Q, Huang Y Z, Shi Y X, Tao X L, Yang P, Dong X Y, Hu J, Huang Z X, Chen X Y, Qu J P 2023 Adv. Funct. Mater. 33 2302164Google Scholar

    [30]

    Wang Z, Cheng L, Zheng Y B, Qin Y, Wang Z L 2014 Nano Energy 10 37Google Scholar

    [31]

    Wu H Y, He W C, Shan C C, Wang Z, Fu S K, Tang Q, Guo H Y, Du Y, Liu W L, Hu C G 2022 Adv. Mater. 34 2109918Google Scholar

    [32]

    Li X, Tung C H, Pey K L 2008 Appl. Phys. Lett. 93 072903Google Scholar

    [33]

    Baird M E 1975 Phys. Bull. 26 54Google Scholar

    [34]

    Wang C Y, Guo H Y, Wang P, Li J W, Sun Y H, Zhang D 2023 Adv. Mater. 35 2209895Google Scholar

    [35]

    Fradera X, Austen M A, Bader R F W 1999 J. Phys. Chem. A 103 304Google Scholar

    [36]

    Tanaka M, Sackmann E 2005 Nature 437 656Google Scholar

    [37]

    Feng H F, Li H Y, Xu J, Yin Y M, Cao J W, Yu R X, Wang B X, Li R W, Zhu G 2022 Nano Energy 98 107279Google Scholar

    [38]

    Muthu M, Pandey R, Wang X, Chandrasekhar A, Palani I A, Singh V 2020 Nano Energy 78 105205Google Scholar

    [39]

    Sun X, Liu Y J, Luo N, Liu Y, Feng Y G, Chen S G, Wang D A 2022 Nano Energy 102 107691Google Scholar

    [40]

    Li Y, Xiao S, Zhang X X, Jia P, Tian S S, Pan C, Zeng F P, Chen D C, Chen Y Y, Tang J, Xiong J Q 2022 Nano Energy 98 107347Google Scholar

    [41]

    Liu Z Q, Huang Y Z, Shi Y X, Tao X L, He H Z, Chen F D, Huang Z X, Wang Z L, Chen X Y, Qu J P 2022 Nat. Commun. 13 4083Google Scholar

    [42]

    Aazem I, Walden R, Babu A, Pillai S C 2022 Results in Engineering 16 100756Google Scholar

    [43]

    Mule A R, Dudem B, Yu J S 2018 Energy 165 677Google Scholar

    [44]

    Shrestha K, Sharma S, Pradhan G B, Bhatta T, Maharjan P, Rana S S, Lee S, Seonu S, Shin Y, Park J Y 2022 Adv. Funct. Mater. 32 2113005Google Scholar

    [45]

    Li Y, Xiao S, Luo Y, Tian S S, Tang J, Zhang X X, Xiong J Q 2022 Nano Energy 104 107884Google Scholar

    [46]

    Sun Y, Zheng Y D, Wang R, Lei T D, Liu J, Fan J, Shou W, Liu Y 2022 Nano Energy 100 107506Google Scholar

    [47]

    Xiong J Q, Luo H S, Gao D C, Zhou X R, Cui P, Thangavel G, Parida K, Lee P S 2019 Nano Energy 61 584Google Scholar

    [48]

    Li S Y, Nie J H, Shi Y X, Tao X L, Wang F, Tian J W, Lin S Q, Chen X Y, Wang Z L 2020 Adv. Mater. 32 2001307Google Scholar

    [49]

    Lin S Q, Zheng M L, Luo J J, Wang Z L 2020 ACS Nano 14 10733Google Scholar

    [50]

    Luo N, Feng Y G, Li X J, Sun W X, Wang D A, Ye Q, Sun X J, Zhou F, Liu W M 2021 ACS Appl. Mater. Interfaces 13 15344Google Scholar

    [51]

    Liu Y H, Fu Q, Mo J L, Lu Y X, Cai C C, Luo B, Nie S X 2021 Nano Energy 89 106369Google Scholar

    [52]

    Ryu H, Lee J, Kim T, Khan U, Lee J H, Kwak S S, Yoon H, Kim S 2017 Adv. Energy Mater. 7 1700289Google Scholar

    [53]

    Sundriyal P, Pandey M, Bhattacharya S 2020 Int. J. Adhes. Adhes. 101 102626Google Scholar

    [54]

    Zhang Q, Jiang C M, Li X J, Dai S F, Ying Y B, Ping J F 2021 ACS Nano 15 12314Google Scholar

    [55]

    Kim W, Okada T, Park H W, Kim J, Kim S, Kim S W, Samukawa S, Choi D 2019 J. Mater. Chem. A 7 25066Google Scholar

    [56]

    Li L Z, Wang X L, Hu Y Q, Li Z H, Wang C F, Zhao Z R 2022 Adv. Funct. Mater. 32 2109949Google Scholar

    [57]

    Yu S Y, Tai Y Y, Milam-Guerrero J, Nam J, Myung N V 2022 Nano Energy 97 107174Google Scholar

    [58]

    Li L Z, Wang X L, Hu Y Q, Li Z H, Zhao Z R, Zheng G 2023 Nano Energy 115 108724Google Scholar

    [59]

    Xi B B, Wang L L, Yang B, Xia Y F, Chen D L, Wang X 2023 Nano Energy 110 108385Google Scholar

    [60]

    Min G, Pullanchiyodan A, Dahiya A S, Hosseini E S, Xu Y, Mulvihill D M, Dahiya R 2021 Nano Energy 90 106600Google Scholar

    [61]

    Shi L, Jin H, Dong S R, Huang S Y, Kuang H Z, Xu H S, Chen J, K Xuan W P, Zhang S M, Li S J, Wang X Z, Luo J K 2021 Nano Energy 80 105599Google Scholar

    [62]

    Tang Y, Xu B G, Gao Y Y, Li Z H, Tan D, Li M Q, Liu Y F, Huang J X 2022 Nano Energy 103 107833Google Scholar

    [63]

    Sun Q Z, Ren G Z, He S H, Tang B, Li Y J, Wei Y W, Shi X W, Tan S X, Yan R, Wang K L, Yu L Y Z, Wang J J, Gao K, Zhu C C, Song Y X, Gong Z Y, Lu G, Huang W, Yu H D 2023 Adv. Mater. 36 2307918

    [64]

    Salauddin Md, Rana S M S, Sharifuzzaman Md, Song H S, Reza Md S, Jeong S H, Park J Y 2023 Adv. Energy Mater. 13 2203812Google Scholar

    [65]

    Cao V A, Kim M, Lee S, Van P C, Jeong J R, Park P, Nah J 2023 Nano Energy 107 108128Google Scholar

    [66]

    Bhatta T, Maharjan P, Cho H, Park C, Yoon S H, Sharma S, Salauddin M, Rahman M T, Rana S S, Park J Y 2021 Nano Energy 81 105670Google Scholar

    [67]

    Suo X, Li B, Ji H F, Mei S L, Miao S, Gu M W, Yang Y Z, Jiang D S, Cui S J, Chen L G, Chen G Y, Wen Z, Huang H B 2023 Nano Energy 114 108651Google Scholar

    [68]

    Zhong J X, Hou X J, He J, Xue F, Yang Y, Chen L, Yu J B, Mu J L, Geng W P, Chou X J 2022 Nano Energy 98 107289Google Scholar

    [69]

    Rahman M T, Rana S S, Zahed M A, Lee S, Yoon E S, Park J Y 2022 Nano Energy 94 106921Google Scholar

    [70]

    Chen Z, Cao Y, Yang W, An L, Fan H, Guo Y 2022 J. Mater. Chem. A 10 799Google Scholar

    [71]

    Li W J, Lu L Q, Yan F, Palasantzas G, Loos K, Pei Y T 2023 Nano Energy 114 108629Google Scholar

    [72]

    Jiang F, Zhou X R, Lü J, Chen J, Chen J T, Kongcharoen H, Zhang Y H, Lee P S 2022 Adv. Mater. 34 2200042Google Scholar

    [73]

    Ghosh S K, Kim J, Kim M P, Na S, Cho J, Kim J J, Ko H 2022 ACS Nano 16 11415Google Scholar

    [74]

    Zhou W Y, Li T, Yuan M X, Li B, Zhong S L, Li Z, Liu X R, Zhou J J, Wang Y, Cai H W, Dang Z M 2021 ESM 42 1

    [75]

    Yao L M, Pan Z B, Liu S H, Zhai J W, Chen H H D 2016 ACS Appl. Mater. Interfaces 8 26343Google Scholar

    [76]

    Luo S B, Yu J Y, Yu S H, Sun R, Cao L Q, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar

    [77]

    Jiang J Y, Shen Z H, Cai X K, Qian J F, Dan Z K, Lin Y H, Liu B L, Nan C W, Chen L Q, Shen Y 2019 Adv. Energy Mater. 9 1803411Google Scholar

    [78]

    Xie X K, Chen X P, Zhao C, Liu Y N, Sun X H, Zhao C Z, Wen Z 2021 Nano Energy 79 105439Google Scholar

    [79]

    Pérez A T, Castellanos A 1989 Phys. Rev. A 40 5844Google Scholar

    [80]

    Shi K, Chai B, Zou H, Min D, Li S, Jiang P, Huang X 2022 Research 2022 2022/9862980Google Scholar

    [81]

    Cui N Y, Gu L, Lei Y M, Liu J M, Qin Y, Ma X H, Hao Y, Wang Z L 2016 ACS Nano 10 6131Google Scholar

    [82]

    Feng Y G, Zheng Y B, Zhang G, Wang D A, Zhou F, Liu W M 2017 Nano Energy 38 467Google Scholar

    [83]

    Li Z L, Zhu M M, Qiu Q, Yu J Y, Ding B 2018 Nano Energy 53 726Google Scholar

    [84]

    Park H W, Huynh N D, Kim W, Lee C, Nam Y, Lee S, Chung K B, Choi D 2018 Nano Energy 50 9Google Scholar

    [85]

    Salauddin M, Rana S S, Sharifuzzaman M, Lee S H, Zahed M A, Do Shin Y, Seonu S, Song H S, Bhatta T, Park J Y 2022 Nano Energy 100 107462Google Scholar

    [86]

    Jiang H X, Lei H, Wen Z, Shi J H, Bao D Q, Chen C, Jiang J X, Guan Q B, Sun X H, Lee S T 2020 Nano Energy 75 105011Google Scholar

    [87]

    Lü S S, Zhang X, Huang T, Yu H, Zhang Q H, Zhu M F 2021 ACS Appl. Mater. Interfaces 13 2566Google Scholar

    [88]

    Xie X, Fang Y, Lu C, Tao Y, Yin L, Zhang Y, Wang Z, Wang S, Zhao J, Tu X, Sun X, Lim E G, Zhao C, Liu Y, Wen Z 2023 Chem. Eng. J. 452 139469Google Scholar

    [89]

    Feng M J, Feng Y, Zhang T D, Li J L, Chen Q G, Chi Q G, Lei Q Q 2021 Adv. Sci. 8 2102221Google Scholar

    [90]

    Kim M P, Lee G, Noh B, Kim J, Kwak M S, Lee K J, Ko H 2024 Nano Energy 119 109087Google Scholar

    [91]

    Park Y, Shin Y E, Park J, Lee Y, Kim M P, Kim Y R, Na S, Ghosh S K, Ko H 2020 ACS Nano 14 7101Google Scholar

    [92]

    Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 27 1606292Google Scholar

    [93]

    Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112Google Scholar

    [94]

    Wang Y F, Wang L X, Yuan Q B, Niu Y J, Chen J, Wang Q, Wang H 2017 J. Mater. Chem. A 5 10849Google Scholar

  • 图 1  高性能摩擦纳米发电机的电介质材料改性与设计策略[13-18]

    Figure 1.  Schematic diagram of dielectric modification and design strategies for high-performance triboelectric nanogenerator[13-18].

    图 2  (a) CS-TENG的理论模型[22], 电介质-电介质型(i)和导体-电介质型(ii); (b) 纳米电介质的界面模型[25]

    Figure 2.  (a) Theoretical models for CS-TENG[22], dielectric-to-dielectric mode (i), and conductor-to-dielectric mode (ii); (b) interface model of nanodielectrics[25].

    图 3  表面粗糙度控制策略 (a) 表面改性机制[41]; (b) 表面图案化[13]; (c) 砂纸模版法[44]; (d) 静电纺丝ZnO/PAN纤维膜[46]; (e) 静电纺丝SMPU纤维膜[47]

    Figure 3.  Surface roughness control strategy: (a) Surface modification mechanism[41]; (b) surface patterning[13]; (c) sandpaper template method[44]; (d) electrospun ZnO/PAN fiber membrane[46]; (e) electrospun SMPU fiber membrane[47].

    图 4  表面官能团修饰策略 (a) 原子层面修饰[14]; (b) 纤维素分子修饰[51]; (c) 离子改性[52]; (d) 等离子体处理[54]; (e) 中性束处理[55]

    Figure 4.  Surface functional group modification strategy: (a) Atomic level modification[14]; (b) cellulose molecule modification[51]; (c) ion modification[52]; (d) plasma treatment[54]; (e) neutral beam treatment[55].

    图 5  提高相对介电常数的策略 (a) 极性相诱导示意图[57]; (b) Bi2WO6:PVDF-TrFE纳米纤维膜[15]; (c) 微电容器模型示意图[67]; (d) Co-NPC/PVDF介质形成的微电容器[69]; (e) MOF纳米片/丝素蛋白复合膜[70]; (f) Cs3Bi2Br9/PVDF-HFP纳米纤维膜[72]

    Figure 5.  Strategies for improving relative permittivity: (a) Schematic diagram of polar phase induction[57]; (b) Bi2WO6:PVDF-TrFE nanofiber membrane[15]; (c) schematic diagram of the microcapacitor model[67]; (d) microcapacitor formed by Co-NPC/PVDF dielectric[69]; (e) MOF nanoflakes/silk fibroin composite membrane[70]; (f) Cs3Bi2Br9/PVDF-HFP nanofiber membrane[72].

    图 6  抑制相对介电损耗、提高介电强度的策略 (a) Ag@C纳米颗粒掺入PDMS基质[16]; (b) Al@Al2O3纳米颗粒掺入PVDF基质[74]; (c) Ba(Zr0.21Ti0.79)O3和BNNS共同掺入PVDF基质[76]; (d) TiO2纳米棒阵列掺入PVDF基质[75]

    Figure 6.  Strategies to suppress relative dielectric loss and improve dielectric strength (a) Ag@C nanoparticles incorporated into PDMS matrix[16]; (b) Al@Al2O3 nanoparticles incorporated into PVDF matrix[74]; (c) Ba(Zr0.21Ti0.79)O3 and BNNS incorporated into PVDF matrix[76]; (d) TiO2 nanorod array incorporated into PVDF matrix[75].

    图 7  电荷传输层、储存层、阻挡层 (a) rGO-AgNPs充当电荷捕获层[86]; (b) 摩擦电介质体积电导率对电荷捕获的影响[87]; (c) PVA-PVA/CNT-PS充当电荷收集层、传输层和储存层[17]; (d) TiOx充当电荷阻挡层[84]

    Figure 7.  Charge transport-storage-blocking layer: (a) rGO-AgNPs functioning as charge trapping layer[86]; (b) effect of tribo-layer volume conductivity on charge trapping[87]; (c) PVA-PVA/CNT-PS functioning as charge transport, transfer, and storage layer[17]; (d) TiOx functioning as charge blocking layer[84].

    图 8  多层电介质结构设计 (a) Maxwell-Sillar-Wagner模型[90]; (b) 铁电多层纳米复合电介质[91]; (c) PVDF/BNNS-PVDF/BST-PVDF/BNNS三层结构电介质[92]; (d) 梯度浓度的PVDF/BaTiO3三层结构电介质[94]

    Figure 8.  Multilayered dielectric structure design: (a) Maxwell-Sillar-Wagner model[90]; (b) ferroelectric multilayer nanocomposite dielectric[91]; (c) PVDF/BNNS-PVDF/BST-PVDF/BNNS three-layer structure dielectric[92]; (d) PVDF/BaTiO3 three-layer structure dielectric with gradient concentration[94].

  • [1]

    Fan F R, Tian Z Q, Lin Wang Z 2012 Nano Energy 1 328Google Scholar

    [2]

    Kim W G, Kim D W, Tcho I W, Kim J K, Kim M S, Choi Y K 2021 ACS Nano 15 258Google Scholar

    [3]

    Chang A, Uy C, Xiao X, Xiao X, Chen J 2022 Nano Energy 98 107282Google Scholar

    [4]

    Wang Z L 2021 Rep. Prog. Phys. 84 096502Google Scholar

    [5]

    Deng H C, Xiao S, Yang A J, Wu H Y, Tang J, Zhang X X, Li Y 2023 Nano Energy 115 108738Google Scholar

    [6]

    Fan Y Y, Zhang L, Li D C, Wang Z L 2023 Nano Energy 118 108959Google Scholar

    [7]

    Chen G, Wang J, Xu G Q, Fu J J, Gani A B, Dai J H, Guan D, Tu Y P, Li C Y, Zi Y L 2023 EcoMat 5 e12410Google Scholar

    [8]

    Liang Y, Xu X Y, Zhao L B, Lei C Y, Dai K J, Zhuo R, Fan B B, Cheng E, Hassan M A, Gao L X, Mu X J, Hu N, Zhang C 2023 Small 2308469Google Scholar

    [9]

    Zhou L L, Liu D, Wang J, Wang Z L 2020 Friction 8 481Google Scholar

    [10]

    Jiang F, Zhan L X, Lee J P, Lee P S 2023 Adv. Mater. 36 2308197

    [11]

    Liu Y H, Mo J L, Fu Q, Lu Y X, Zhang N, Wang S F, Nie S X 2020 Adv. Funct. Mater. 30 2004714Google Scholar

    [12]

    Tao X L, Chen X, Wang Z L 2023 Energy Environ. Sci. 16 3654Google Scholar

    [13]

    Ahn J, Zhao Z J, Choi J, Jeong Y, Hwang S, Ko J, Gu J, Jeon S, Park J, Kang M, Del Orbe D V, Cho I, Kang H, Bok M, Jeong J H, Park I 2021 Nano Energy 85 105978Google Scholar

    [14]

    Shin S H, Bae Y E, Moon H K, Kim J, Choi S H, Kim Y, Yoon H J, Lee M H, Nah J 2017 ACS Nano 11 6131Google Scholar

    [15]

    Bharti D K, Veeralingam S, Badhulika S 2022 Mater. Horiz. 9 663Google Scholar

    [16]

    Peng Z H, Xiao X, Song J X, Libanori A, Lee C, Chen K, Gao Y, Fang Y S, Wang J, Wang Z K, Chen J, Leung M K H 2022 ACS Nano 16 20251Google Scholar

    [17]

    Cui N Y, Liu J M, Lei Y M, Gu L, Xu Q, Liu S H, Qin Y 2018 ACS Appl. Energy Mater. 1 2891Google Scholar

    [18]

    Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar

    [19]

    Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339Google Scholar

    [20]

    Wang S H, Lin L, Xie Y N, Jing Q S, Niu S M, Wang Z L 2013 Nano Lett. 13 2226Google Scholar

    [21]

    Mallineni S S K, Behlow H, Dong Y, Bhattacharya S, Rao A M, Podila R 2017 Nano Energy 35 263Google Scholar

    [22]

    Niu S, Wang Z L 2015 Nano Energy 14 161Google Scholar

    [23]

    Liu D, Zhou L L, Cui S N, Gao Y K, Li S X, Zhao Z H, Yi Z Y, Zou H Y, Fan Y J, Wang J, Wang Z L 2022 Nat. Commun. 13 6019Google Scholar

    [24]

    Wang H B, Huang S Y, Kuang H Z, Zhang C, Liu Y L, Zhang K H, Cai X Y, Wang X Z, Luo J K, Wang Z L 2023 Adv. Energy Mater. 13 2300529Google Scholar

    [25]

    Wang S J, Luo Z, Liang J J, Hu J, Jiang N S, He J L, Li Q 2022 ACS Nano 16 13612Google Scholar

    [26]

    Khandelwal G, Maria Joseph Raj N P, Kim S 2021 Adv. Energy Mater. 11 2101170Google Scholar

    [27]

    Wang Z L, Wang A C 2019 Mater. Today 30 34Google Scholar

    [28]

    Kim M P, Um D S, Shin Y E, Ko H 2021 Nanoscale Res. Lett. 16 35Google Scholar

    [29]

    Liu Z Q, Huang Y Z, Shi Y X, Tao X L, Yang P, Dong X Y, Hu J, Huang Z X, Chen X Y, Qu J P 2023 Adv. Funct. Mater. 33 2302164Google Scholar

    [30]

    Wang Z, Cheng L, Zheng Y B, Qin Y, Wang Z L 2014 Nano Energy 10 37Google Scholar

    [31]

    Wu H Y, He W C, Shan C C, Wang Z, Fu S K, Tang Q, Guo H Y, Du Y, Liu W L, Hu C G 2022 Adv. Mater. 34 2109918Google Scholar

    [32]

    Li X, Tung C H, Pey K L 2008 Appl. Phys. Lett. 93 072903Google Scholar

    [33]

    Baird M E 1975 Phys. Bull. 26 54Google Scholar

    [34]

    Wang C Y, Guo H Y, Wang P, Li J W, Sun Y H, Zhang D 2023 Adv. Mater. 35 2209895Google Scholar

    [35]

    Fradera X, Austen M A, Bader R F W 1999 J. Phys. Chem. A 103 304Google Scholar

    [36]

    Tanaka M, Sackmann E 2005 Nature 437 656Google Scholar

    [37]

    Feng H F, Li H Y, Xu J, Yin Y M, Cao J W, Yu R X, Wang B X, Li R W, Zhu G 2022 Nano Energy 98 107279Google Scholar

    [38]

    Muthu M, Pandey R, Wang X, Chandrasekhar A, Palani I A, Singh V 2020 Nano Energy 78 105205Google Scholar

    [39]

    Sun X, Liu Y J, Luo N, Liu Y, Feng Y G, Chen S G, Wang D A 2022 Nano Energy 102 107691Google Scholar

    [40]

    Li Y, Xiao S, Zhang X X, Jia P, Tian S S, Pan C, Zeng F P, Chen D C, Chen Y Y, Tang J, Xiong J Q 2022 Nano Energy 98 107347Google Scholar

    [41]

    Liu Z Q, Huang Y Z, Shi Y X, Tao X L, He H Z, Chen F D, Huang Z X, Wang Z L, Chen X Y, Qu J P 2022 Nat. Commun. 13 4083Google Scholar

    [42]

    Aazem I, Walden R, Babu A, Pillai S C 2022 Results in Engineering 16 100756Google Scholar

    [43]

    Mule A R, Dudem B, Yu J S 2018 Energy 165 677Google Scholar

    [44]

    Shrestha K, Sharma S, Pradhan G B, Bhatta T, Maharjan P, Rana S S, Lee S, Seonu S, Shin Y, Park J Y 2022 Adv. Funct. Mater. 32 2113005Google Scholar

    [45]

    Li Y, Xiao S, Luo Y, Tian S S, Tang J, Zhang X X, Xiong J Q 2022 Nano Energy 104 107884Google Scholar

    [46]

    Sun Y, Zheng Y D, Wang R, Lei T D, Liu J, Fan J, Shou W, Liu Y 2022 Nano Energy 100 107506Google Scholar

    [47]

    Xiong J Q, Luo H S, Gao D C, Zhou X R, Cui P, Thangavel G, Parida K, Lee P S 2019 Nano Energy 61 584Google Scholar

    [48]

    Li S Y, Nie J H, Shi Y X, Tao X L, Wang F, Tian J W, Lin S Q, Chen X Y, Wang Z L 2020 Adv. Mater. 32 2001307Google Scholar

    [49]

    Lin S Q, Zheng M L, Luo J J, Wang Z L 2020 ACS Nano 14 10733Google Scholar

    [50]

    Luo N, Feng Y G, Li X J, Sun W X, Wang D A, Ye Q, Sun X J, Zhou F, Liu W M 2021 ACS Appl. Mater. Interfaces 13 15344Google Scholar

    [51]

    Liu Y H, Fu Q, Mo J L, Lu Y X, Cai C C, Luo B, Nie S X 2021 Nano Energy 89 106369Google Scholar

    [52]

    Ryu H, Lee J, Kim T, Khan U, Lee J H, Kwak S S, Yoon H, Kim S 2017 Adv. Energy Mater. 7 1700289Google Scholar

    [53]

    Sundriyal P, Pandey M, Bhattacharya S 2020 Int. J. Adhes. Adhes. 101 102626Google Scholar

    [54]

    Zhang Q, Jiang C M, Li X J, Dai S F, Ying Y B, Ping J F 2021 ACS Nano 15 12314Google Scholar

    [55]

    Kim W, Okada T, Park H W, Kim J, Kim S, Kim S W, Samukawa S, Choi D 2019 J. Mater. Chem. A 7 25066Google Scholar

    [56]

    Li L Z, Wang X L, Hu Y Q, Li Z H, Wang C F, Zhao Z R 2022 Adv. Funct. Mater. 32 2109949Google Scholar

    [57]

    Yu S Y, Tai Y Y, Milam-Guerrero J, Nam J, Myung N V 2022 Nano Energy 97 107174Google Scholar

    [58]

    Li L Z, Wang X L, Hu Y Q, Li Z H, Zhao Z R, Zheng G 2023 Nano Energy 115 108724Google Scholar

    [59]

    Xi B B, Wang L L, Yang B, Xia Y F, Chen D L, Wang X 2023 Nano Energy 110 108385Google Scholar

    [60]

    Min G, Pullanchiyodan A, Dahiya A S, Hosseini E S, Xu Y, Mulvihill D M, Dahiya R 2021 Nano Energy 90 106600Google Scholar

    [61]

    Shi L, Jin H, Dong S R, Huang S Y, Kuang H Z, Xu H S, Chen J, K Xuan W P, Zhang S M, Li S J, Wang X Z, Luo J K 2021 Nano Energy 80 105599Google Scholar

    [62]

    Tang Y, Xu B G, Gao Y Y, Li Z H, Tan D, Li M Q, Liu Y F, Huang J X 2022 Nano Energy 103 107833Google Scholar

    [63]

    Sun Q Z, Ren G Z, He S H, Tang B, Li Y J, Wei Y W, Shi X W, Tan S X, Yan R, Wang K L, Yu L Y Z, Wang J J, Gao K, Zhu C C, Song Y X, Gong Z Y, Lu G, Huang W, Yu H D 2023 Adv. Mater. 36 2307918

    [64]

    Salauddin Md, Rana S M S, Sharifuzzaman Md, Song H S, Reza Md S, Jeong S H, Park J Y 2023 Adv. Energy Mater. 13 2203812Google Scholar

    [65]

    Cao V A, Kim M, Lee S, Van P C, Jeong J R, Park P, Nah J 2023 Nano Energy 107 108128Google Scholar

    [66]

    Bhatta T, Maharjan P, Cho H, Park C, Yoon S H, Sharma S, Salauddin M, Rahman M T, Rana S S, Park J Y 2021 Nano Energy 81 105670Google Scholar

    [67]

    Suo X, Li B, Ji H F, Mei S L, Miao S, Gu M W, Yang Y Z, Jiang D S, Cui S J, Chen L G, Chen G Y, Wen Z, Huang H B 2023 Nano Energy 114 108651Google Scholar

    [68]

    Zhong J X, Hou X J, He J, Xue F, Yang Y, Chen L, Yu J B, Mu J L, Geng W P, Chou X J 2022 Nano Energy 98 107289Google Scholar

    [69]

    Rahman M T, Rana S S, Zahed M A, Lee S, Yoon E S, Park J Y 2022 Nano Energy 94 106921Google Scholar

    [70]

    Chen Z, Cao Y, Yang W, An L, Fan H, Guo Y 2022 J. Mater. Chem. A 10 799Google Scholar

    [71]

    Li W J, Lu L Q, Yan F, Palasantzas G, Loos K, Pei Y T 2023 Nano Energy 114 108629Google Scholar

    [72]

    Jiang F, Zhou X R, Lü J, Chen J, Chen J T, Kongcharoen H, Zhang Y H, Lee P S 2022 Adv. Mater. 34 2200042Google Scholar

    [73]

    Ghosh S K, Kim J, Kim M P, Na S, Cho J, Kim J J, Ko H 2022 ACS Nano 16 11415Google Scholar

    [74]

    Zhou W Y, Li T, Yuan M X, Li B, Zhong S L, Li Z, Liu X R, Zhou J J, Wang Y, Cai H W, Dang Z M 2021 ESM 42 1

    [75]

    Yao L M, Pan Z B, Liu S H, Zhai J W, Chen H H D 2016 ACS Appl. Mater. Interfaces 8 26343Google Scholar

    [76]

    Luo S B, Yu J Y, Yu S H, Sun R, Cao L Q, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar

    [77]

    Jiang J Y, Shen Z H, Cai X K, Qian J F, Dan Z K, Lin Y H, Liu B L, Nan C W, Chen L Q, Shen Y 2019 Adv. Energy Mater. 9 1803411Google Scholar

    [78]

    Xie X K, Chen X P, Zhao C, Liu Y N, Sun X H, Zhao C Z, Wen Z 2021 Nano Energy 79 105439Google Scholar

    [79]

    Pérez A T, Castellanos A 1989 Phys. Rev. A 40 5844Google Scholar

    [80]

    Shi K, Chai B, Zou H, Min D, Li S, Jiang P, Huang X 2022 Research 2022 2022/9862980Google Scholar

    [81]

    Cui N Y, Gu L, Lei Y M, Liu J M, Qin Y, Ma X H, Hao Y, Wang Z L 2016 ACS Nano 10 6131Google Scholar

    [82]

    Feng Y G, Zheng Y B, Zhang G, Wang D A, Zhou F, Liu W M 2017 Nano Energy 38 467Google Scholar

    [83]

    Li Z L, Zhu M M, Qiu Q, Yu J Y, Ding B 2018 Nano Energy 53 726Google Scholar

    [84]

    Park H W, Huynh N D, Kim W, Lee C, Nam Y, Lee S, Chung K B, Choi D 2018 Nano Energy 50 9Google Scholar

    [85]

    Salauddin M, Rana S S, Sharifuzzaman M, Lee S H, Zahed M A, Do Shin Y, Seonu S, Song H S, Bhatta T, Park J Y 2022 Nano Energy 100 107462Google Scholar

    [86]

    Jiang H X, Lei H, Wen Z, Shi J H, Bao D Q, Chen C, Jiang J X, Guan Q B, Sun X H, Lee S T 2020 Nano Energy 75 105011Google Scholar

    [87]

    Lü S S, Zhang X, Huang T, Yu H, Zhang Q H, Zhu M F 2021 ACS Appl. Mater. Interfaces 13 2566Google Scholar

    [88]

    Xie X, Fang Y, Lu C, Tao Y, Yin L, Zhang Y, Wang Z, Wang S, Zhao J, Tu X, Sun X, Lim E G, Zhao C, Liu Y, Wen Z 2023 Chem. Eng. J. 452 139469Google Scholar

    [89]

    Feng M J, Feng Y, Zhang T D, Li J L, Chen Q G, Chi Q G, Lei Q Q 2021 Adv. Sci. 8 2102221Google Scholar

    [90]

    Kim M P, Lee G, Noh B, Kim J, Kwak M S, Lee K J, Ko H 2024 Nano Energy 119 109087Google Scholar

    [91]

    Park Y, Shin Y E, Park J, Lee Y, Kim M P, Kim Y R, Na S, Ghosh S K, Ko H 2020 ACS Nano 14 7101Google Scholar

    [92]

    Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 27 1606292Google Scholar

    [93]

    Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112Google Scholar

    [94]

    Wang Y F, Wang L X, Yuan Q B, Niu Y J, Chen J, Wang Q, Wang H 2017 J. Mater. Chem. A 5 10849Google Scholar

  • [1] Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei. Research progress of flexible energy storage dielectric materials with sandwiched structure. Acta Physica Sinica, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] Ren Jun-Wen, Jiang Guo-Qing, Chen Zhi-Jie, Wei Hua-Chao, Zhao Li-Hua, Jia Shen-Li. Surface structure design of boron nitride nanotubes and mechanism of their regulation on properties of epoxy composite dielectric. Acta Physica Sinica, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [3] Song Xiao-Fan, Min Dao-Min, Gao Zi-Wei, Wang Po-Xin, Hao Yu-Tao, Gao Jing-Hui, Zhong Li-Sheng. Effect exponentially distributed trapped charge jump transport on energy storage performance in polyetherimide nanocomposite dielectric. Acta Physica Sinica, 2024, 73(2): 027301. doi: 10.7498/aps.73.20230556
    [4] Jiang Le-Xin, Xie Zhen-Long, Guo Ze-Hong, Qiu Yi-Ning, Chen Yi-Hang. Mechanism study of all-dielectric metamaterial wideband reflector based on quasi-canonical mode. Acta Physica Sinica, 2023, 72(20): 204205. doi: 10.7498/aps.72.20230915
    [5] Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [6] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [7] Liang Shuai-Bo, Yuan Tao, Qiu Yang, Zhang Zhen, Miao Ya-Ning, Han Jing-Feng, Liu Xiu-Tong, Yao Chun-Li. Barium titanate dielectric regulation improved output performance of paper-based triboelectric nanogenerator. Acta Physica Sinica, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [8] Preface to the special topic: Dielectric materials and physics. Acta Physica Sinica, 2020, 69(12): 120101. doi: 10.7498/aps.69.120101
    [9] Cao Jie, Gu Wei-Guang, Qu Zhao-Qi, Zhong Yan, Cheng Guang-Gui, Zhang Zhong-Qiang. Design and research of non-contact triboelectric nanogenerator based on changing electrostatic field. Acta Physica Sinica, 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [10] Ding Ya-Fei, Chen Xiang-Yu. Triboelectric nanogenerator based wearable energy harvesting devices. Acta Physica Sinica, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [11] Wu Ye-Sheng, Liu Qi, Cao Jie, Li Kai, Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Jiang Shi-Yu. Design and output performance of vibration energy harvesting triboelectric nanogenerator. Acta Physica Sinica, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [12] Yuan Duan-Lei, Min Dao-Min, Huang Yin, Xie Dong-Ri, Wang Hai-Yan, Yang Fang, Zhu Zhi-Hao, Fei Xiang, Li Sheng-Tao. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites. Acta Physica Sinica, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [13] Liu Kui-Li, Zhou Si-Hua, Chen Song-Ling. Exchange bias tuning of metal ions doped in CuO nanocomposites. Acta Physica Sinica, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [14] Yu Li-Gang, Li Zhao-Hui, Wang Ren-Qian, Ma Li-Li. Analysis of underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell. Acta Physica Sinica, 2013, 62(6): 064301. doi: 10.7498/aps.62.064301
    [15] Tang Jing-Jing, Feng Yan-Hui, Li Wei, Cui Liu, Zhang Xin-Xin. Thermal conductivity of carbon nanotube cable type composite. Acta Physica Sinica, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [16] Li Zhen-Wu. Opto-electronic properties of CdS nano particle/carbon nanotube composites. Acta Physica Sinica, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [17] Li Dong-Hai, Chen Fa-Liang. Microscopic theoretical investigation on propagation and breakdown depth of ultrashort-pulse laser in dielectrics. Acta Physica Sinica, 2011, 60(6): 067804. doi: 10.7498/aps.60.067804
    [18] Quan Rong-Hui, Han Jian-Wei, Huang Jian-Guo, Zhang Zhen-Long. Modeling analysis of radiation induced conductivity in electrical insulator. Acta Physica Sinica, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [19] Zhao Tian-En, Wu Rui-Xin, Yang Fan, Chen Ping. Negative effective refraction index in guided wave mode for periodic layered ferrite-dielectric/metallic film composites. Acta Physica Sinica, 2006, 55(1): 179-183. doi: 10.7498/aps.55.179
    [20] Jin Jian-zhong. A SUGGESTION OF USING SOLID INSULATING MATERIAL IN ELECTROSTATIC GENERATOR IN PLACE OF COMPRESSED GASES. Acta Physica Sinica, 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
Metrics
  • Abstract views:  566
  • PDF Downloads:  54
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2024
  • Accepted Date:  05 March 2024
  • Available Online:  28 March 2024
  • Published Online:  05 April 2024

/

返回文章
返回