Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Circuit design and implementation of Lorenz chaotic system with one parameter

Sun Ke-Hui Yang Jing-Li Ding Jia-Feng Sheng Li-Yuan

Circuit design and implementation of Lorenz chaotic system with one parameter

Sun Ke-Hui, Yang Jing-Li, Ding Jia-Feng, Sheng Li-Yuan
PDF
Get Citation
  • To study the characteristics of the chaotic systems and their applications, an electronic circuit of simplified Lorenz chaotic system with one parameter is designed and experimented with discrete components. The system parameters correspond to the circuit element parameters. By regulating the variable resistor in the circuit, dynamic behaviors including limit cycle, pitchfork bifurcation, period-doubling bifurcation, chaos, and route to chaos by period-doubling bifurcation, are observed. The necessary condition for the existence of chaos in the fractional-order simplified Lorenz system is deduced. The lowest order of the fractional-order simplified Lorenz system and the variation law of the lowest order with system parameters are determined. Circuit simulations and experiments show that the simplified Lorenz system has rich dynamic characteristics, and that theoretical analysis and circuit experiment are accordant with each other.
    • Funds:
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 113

    [2]

    Chen G R, Ueta T 1999 Int. J. Bifur. Chaos 9 1465

    [3]

    Lü J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659

    [4]

    Lü J H, Chen G R, Cheng D Z, elikovsk S 2002 Int. J. Bifur. Chaos 12 2917

    [5]

    Li Y X, Tang W K S, Chen G R 2006 Proceedings International Conference on Communications Circuits and Systems (Vol.4) (Guilin: Guilin University of Electronic Technology) p2569

    [6]

    Wang G Y, Qiu S S, Chen H, Cui J D 2008 J. Circ. Syst. 13 58 (in Chinese) [王光义、 丘水生、 陈 辉、 崔佳冬 2008 电路与系统学报 13 58]

    [7]

    Tang L R, Li J, Fan B 2009 Acta Phys. Sin. 58 1446 (in Chinese) [唐良瑞、 李 静、 樊 冰 2009 物理学报 58 1446]

    [8]

    Ahmad W, Sprott J C 2003 Chaos Solitons Fract. 16 339

    [9]

    Arena P, Caponetto R, Fortuna L, Porto D 1997 Proceedings of the European Conference on Circuit Theory and Design (Budapest: Budapest University of Technology) p1259

    [10]

    Li C G, Chen G R 2004 Chaos Solitons Fract. 22 549

    [11]

    Wang F Q, Liu C X 2006 Acta Phys. Sin. 55 3922 (in Chinese) [王发强、刘崇新 2006 物理学报 55 3922]

    [12]

    Chen X R, Liu C X, Wang F Q 2008 Chin. Phys. 17 1664

    [13]

    Lu J J, Liu C X 2007 Chin. Phys. 16 1586

    [14]

    Sun K H, Sprott J C 2009 Int. J. Bifur. Chaos 19 1357

    [15]

    Vaně ek A, elikovsk S 1996 Control Systems: From Linear Analysis to Synthesis of Chaos (London: Prentice-Hall)

    [16]

    MoMmmad S T, Mohammed H 2007 Phys. Lett. A 367 102

    [17]

    Li C G, Chen G R 2004 Physica A 341 55

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 113

    [2]

    Chen G R, Ueta T 1999 Int. J. Bifur. Chaos 9 1465

    [3]

    Lü J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659

    [4]

    Lü J H, Chen G R, Cheng D Z, elikovsk S 2002 Int. J. Bifur. Chaos 12 2917

    [5]

    Li Y X, Tang W K S, Chen G R 2006 Proceedings International Conference on Communications Circuits and Systems (Vol.4) (Guilin: Guilin University of Electronic Technology) p2569

    [6]

    Wang G Y, Qiu S S, Chen H, Cui J D 2008 J. Circ. Syst. 13 58 (in Chinese) [王光义、 丘水生、 陈 辉、 崔佳冬 2008 电路与系统学报 13 58]

    [7]

    Tang L R, Li J, Fan B 2009 Acta Phys. Sin. 58 1446 (in Chinese) [唐良瑞、 李 静、 樊 冰 2009 物理学报 58 1446]

    [8]

    Ahmad W, Sprott J C 2003 Chaos Solitons Fract. 16 339

    [9]

    Arena P, Caponetto R, Fortuna L, Porto D 1997 Proceedings of the European Conference on Circuit Theory and Design (Budapest: Budapest University of Technology) p1259

    [10]

    Li C G, Chen G R 2004 Chaos Solitons Fract. 22 549

    [11]

    Wang F Q, Liu C X 2006 Acta Phys. Sin. 55 3922 (in Chinese) [王发强、刘崇新 2006 物理学报 55 3922]

    [12]

    Chen X R, Liu C X, Wang F Q 2008 Chin. Phys. 17 1664

    [13]

    Lu J J, Liu C X 2007 Chin. Phys. 16 1586

    [14]

    Sun K H, Sprott J C 2009 Int. J. Bifur. Chaos 19 1357

    [15]

    Vaně ek A, elikovsk S 1996 Control Systems: From Linear Analysis to Synthesis of Chaos (London: Prentice-Hall)

    [16]

    MoMmmad S T, Mohammed H 2007 Phys. Lett. A 367 102

    [17]

    Li C G, Chen G R 2004 Physica A 341 55

  • [1] Li Chun-Guang, Chen Jun. Chaos in a neuron model with adaptive feedback synapse: Electronic circuit design. Acta Physica Sinica, 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [2] Luo Ming-Wei, Luo Xiao-Hua, Li Hua-Qing. A family of four-dimensional multi-wing chaotic system and its circuit implementation. Acta Physica Sinica, 2013, 62(2): 020512. doi: 10.7498/aps.62.020512
    [3] He Shao-Bo, Sun Ke-Hui, Wang Hui-Hai. Solution of the fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analysis. Acta Physica Sinica, 2014, 63(3): 030502. doi: 10.7498/aps.63.030502
    [4] Jia Hong-Yan, Chen Zeng-Qiang, Xue Wei. Analysis and circuit implementation for the fractional-order Lorenz system. Acta Physica Sinica, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [5] Luo Xiao-Hua, Li Hua-Qing, Dai Xiang-Guang. A family of multi-scroll chaotic attractors and its circuit design. Acta Physica Sinica, 2008, 57(12): 7511-7516. doi: 10.7498/aps.57.7511
    [6] Zhang Xin-Guo, Sun Hong-Tao, Zhao Jin-Lan, Liu Ji-Zhao, Ma Yi-De, Han Ting-Wu. Equivalent circuit in function and topology to Chua’s circuit and the design methods of these circuits. Acta Physica Sinica, 2014, 63(20): 200503. doi: 10.7498/aps.63.200503
    [7] Tang Guo-Ning, Luo Xiao-Shu. The prediction feedback control for chaotic systems. Acta Physica Sinica, 2004, 53(1): 15-20. doi: 10.7498/aps.53.15
    [8] Chen Zeng-Qiang, Yuan Zhu-Zhi, Cang Shi-Jian. Analysis and circuit implementation of a new four-dimensional non-autonomous hyper-chaotic system. Acta Physica Sinica, 2008, 57(3): 1493-1501. doi: 10.7498/aps.57.1493
    [9] Wang Xing-Yuan, Wang Ming-Jun. Hyperchaotic Lorenz system. Acta Physica Sinica, 2007, 56(9): 5136-5141. doi: 10.7498/aps.56.5136
    [10] Wang Guang-Yi, Zheng Yan, Liu Jing-Biao. A hyperchaotic Lorenz attractor and its circuit implementation. Acta Physica Sinica, 2007, 56(6): 3113-3120. doi: 10.7498/aps.56.3113
  • Citation:
Metrics
  • Abstract views:  3721
  • PDF Downloads:  1270
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2010
  • Accepted Date:  07 July 2010
  • Published Online:  15 December 2010

Circuit design and implementation of Lorenz chaotic system with one parameter

  • 1. School of Physics Science and Technology, Central South University, Changsha 410083, China

Abstract: To study the characteristics of the chaotic systems and their applications, an electronic circuit of simplified Lorenz chaotic system with one parameter is designed and experimented with discrete components. The system parameters correspond to the circuit element parameters. By regulating the variable resistor in the circuit, dynamic behaviors including limit cycle, pitchfork bifurcation, period-doubling bifurcation, chaos, and route to chaos by period-doubling bifurcation, are observed. The necessary condition for the existence of chaos in the fractional-order simplified Lorenz system is deduced. The lowest order of the fractional-order simplified Lorenz system and the variation law of the lowest order with system parameters are determined. Circuit simulations and experiments show that the simplified Lorenz system has rich dynamic characteristics, and that theoretical analysis and circuit experiment are accordant with each other.

Reference (17)

Catalog

    /

    返回文章
    返回