搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的保群算法及其在混沌系统中的应用

陆见光 唐卷 秦小林 冯勇

改进的保群算法及其在混沌系统中的应用

陆见光, 唐卷, 秦小林, 冯勇
PDF
导出引用
  • 混沌系统的跟踪控制是近年来非线性控制领域研究的热点之一. 本文提出了一种基于快速下降控制方法的保群算法, 此方法使受控混沌系统能够快速稳定到相空间的一个不动点; 另外提出一种基于滑模控制方法的保群算法, 此方法使受控混沌系统能够快速跟踪一个确定的运动轨迹. 应用这两种新方法分别对两个经典的混沌系统(Lorenz系统和Duffing系统)进行了相应的数值实验, 实验结果表明这两种方法都具用较高的精度和稳定性.
      通信作者: 唐卷, tangjuan0822@gmail.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB302402)和国家自然科学基金(批准号: 61402537, 91118001)资助的课题.
    [1]

    Chen G R, Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465

    [2]

    L J H, Chen G R 2002 Int. J. Bifurcat. Chaos 12 659

    [3]

    Zhang H G, Wang Z L,Huang W 2008 Control Theory of Chaotic Systems (Vol. 1) (Shenyang: Northeast Univesity Press) pp1-4 (in Chinese) [张化光, 王智良, 黄伟 2008 混沌系统的控制理论 (沈阳: 东北大学出版社) 第1-4页]

    [4]

    Zhang X H, Shen J, Mei L, Wang D M 2011 Syst. Eng. Elect. 33 603 (in Chinese) [张兴华, 沈捷, 梅磊, 王德明 2011 系统工程与电子技术 33 603]

    [5]

    Davies M J 1972 J. Inst. Math. Appl. 9 357

    [6]

    Van D R, Vlassenbroeck J 1982 J. Comput. Phys. 47 321

    [7]

    El-Kady M, Elbarbary E M E 2002 Appl. Math. Comput. 129 171

    [8]

    Razzaghi M, Elnagar G 1994 J. Comput. Appl. Math. 56 253

    [9]

    Lakestani M, Razzaghi M, Dehghan M 2006 Phys. Scr. 74 362

    [10]

    Song R Z, Xiao W D, Sun C Y, Wei Q L 2013 Chin. Phys. B 22 090502

    [11]

    Wei Q L, Liu D R, Xu Y C 2015 Chin. Phys. B 24 030502

    [12]

    Wei Q L, Song R Z, Sun Q Y, Xiao W D 2015 Chin. Phys. B 24 090504

    [13]

    Liu C S {2012 CMES: Comput. Model. Eng. Sci. 86 171

    [14]

    Liu C S 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2012

    [15]

    Utkin V I 1977 IEEE Trans. Autom. Contr. 22 212

    [16]

    Utkin V I 1992 Sliding Modes in Control and Optimization (Vol. 1) (New York: Springer-Verlag) pp7-11

    [17]

    Slotine J J E, Sastry S S 1983 Int. J. Control 38 465

    [18]

    Levant A 1993 Int. J. Control 58 1247

    [19]

    Wong L K, Leung F H F, Tam P K S 1998 Mechatronics 8 765

    [20]

    Lee H, Utkin V I 2007 Ann. Rev. Control 31 179

    [21]

    Yang G L, Li H G 2009 Acta Phys. Sin. 58 7552 (in Chinese) [杨国良, 李惠光 2009 物理学报 58 7552]

    [22]

    Falahpoor M, Ataei M, Kiyoumarsi A 2009 Chaos Solitons Fract. 42 1755

    [23]

    Qi L 2013 Ph. D. Dissertation (Shanghai: East China University of Science and Technology) (in Chinese) [齐亮 2013 博士学位论文 (上海: 华东理工大学)]

    [24]

    Dong K W, Zhang X 2007 Electrotechnical Application 2 6 (in Chinese) [董克文, 张兴 2007 电气应用 2 6]

    [25]

    Liu C S 2001 Int. J. Non-Linear Mech. 36 1047

    [26]

    Liu C S {2006 CMES: Comput. Model. Eng. Sci. 12 83

    [27]

    Wu W G, Gu T X 2000 Acta Phys. Sin. 49 1922 (in Chinese) [伍维根, 古天祥 2000 物理学报 49 1922]

    [28]

    Cai G L, Tan Z M, Zhou W H, Tu W T 2007 Acta Phys. Sin. 56 6230 (in Chinese) [蔡国梁, 谭振梅, 周维怀, 涂文桃 2007 物理学报 56 6230]

    [29]

    Li G Y 2008 Optimal Control Theory and Application (Vol. 1) (Beijing: National Defence Industry Press) p4 (in Chinese) [李国勇 2008 最优化控制理论与应用 (北京: 国防工业出版社) 第4页]

    [30]

    Wang W 2009 M. S. Dissertation (Dalian: Dalian Jiaotong University) (in Chinese) [王文 2009 硕士学位论文 (大连: 大连交通大学)]

    [31]

    Roopaei M, Sahraei B R, Lin T C 2010 Commun. Nonlinear Sci. Numer. Simul. 15 4158

    [32]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE Trans. Circuits Syst. I 61 854

    [33]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE Trans. Circuits Syst. I 61 2380

  • [1]

    Chen G R, Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465

    [2]

    L J H, Chen G R 2002 Int. J. Bifurcat. Chaos 12 659

    [3]

    Zhang H G, Wang Z L,Huang W 2008 Control Theory of Chaotic Systems (Vol. 1) (Shenyang: Northeast Univesity Press) pp1-4 (in Chinese) [张化光, 王智良, 黄伟 2008 混沌系统的控制理论 (沈阳: 东北大学出版社) 第1-4页]

    [4]

    Zhang X H, Shen J, Mei L, Wang D M 2011 Syst. Eng. Elect. 33 603 (in Chinese) [张兴华, 沈捷, 梅磊, 王德明 2011 系统工程与电子技术 33 603]

    [5]

    Davies M J 1972 J. Inst. Math. Appl. 9 357

    [6]

    Van D R, Vlassenbroeck J 1982 J. Comput. Phys. 47 321

    [7]

    El-Kady M, Elbarbary E M E 2002 Appl. Math. Comput. 129 171

    [8]

    Razzaghi M, Elnagar G 1994 J. Comput. Appl. Math. 56 253

    [9]

    Lakestani M, Razzaghi M, Dehghan M 2006 Phys. Scr. 74 362

    [10]

    Song R Z, Xiao W D, Sun C Y, Wei Q L 2013 Chin. Phys. B 22 090502

    [11]

    Wei Q L, Liu D R, Xu Y C 2015 Chin. Phys. B 24 030502

    [12]

    Wei Q L, Song R Z, Sun Q Y, Xiao W D 2015 Chin. Phys. B 24 090504

    [13]

    Liu C S {2012 CMES: Comput. Model. Eng. Sci. 86 171

    [14]

    Liu C S 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2012

    [15]

    Utkin V I 1977 IEEE Trans. Autom. Contr. 22 212

    [16]

    Utkin V I 1992 Sliding Modes in Control and Optimization (Vol. 1) (New York: Springer-Verlag) pp7-11

    [17]

    Slotine J J E, Sastry S S 1983 Int. J. Control 38 465

    [18]

    Levant A 1993 Int. J. Control 58 1247

    [19]

    Wong L K, Leung F H F, Tam P K S 1998 Mechatronics 8 765

    [20]

    Lee H, Utkin V I 2007 Ann. Rev. Control 31 179

    [21]

    Yang G L, Li H G 2009 Acta Phys. Sin. 58 7552 (in Chinese) [杨国良, 李惠光 2009 物理学报 58 7552]

    [22]

    Falahpoor M, Ataei M, Kiyoumarsi A 2009 Chaos Solitons Fract. 42 1755

    [23]

    Qi L 2013 Ph. D. Dissertation (Shanghai: East China University of Science and Technology) (in Chinese) [齐亮 2013 博士学位论文 (上海: 华东理工大学)]

    [24]

    Dong K W, Zhang X 2007 Electrotechnical Application 2 6 (in Chinese) [董克文, 张兴 2007 电气应用 2 6]

    [25]

    Liu C S 2001 Int. J. Non-Linear Mech. 36 1047

    [26]

    Liu C S {2006 CMES: Comput. Model. Eng. Sci. 12 83

    [27]

    Wu W G, Gu T X 2000 Acta Phys. Sin. 49 1922 (in Chinese) [伍维根, 古天祥 2000 物理学报 49 1922]

    [28]

    Cai G L, Tan Z M, Zhou W H, Tu W T 2007 Acta Phys. Sin. 56 6230 (in Chinese) [蔡国梁, 谭振梅, 周维怀, 涂文桃 2007 物理学报 56 6230]

    [29]

    Li G Y 2008 Optimal Control Theory and Application (Vol. 1) (Beijing: National Defence Industry Press) p4 (in Chinese) [李国勇 2008 最优化控制理论与应用 (北京: 国防工业出版社) 第4页]

    [30]

    Wang W 2009 M. S. Dissertation (Dalian: Dalian Jiaotong University) (in Chinese) [王文 2009 硕士学位论文 (大连: 大连交通大学)]

    [31]

    Roopaei M, Sahraei B R, Lin T C 2010 Commun. Nonlinear Sci. Numer. Simul. 15 4158

    [32]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE Trans. Circuits Syst. I 61 854

    [33]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE Trans. Circuits Syst. I 61 2380

  • [1] 黄泽徽, 李亚安, 陈哲, 刘恋. 基于多尺度熵的Duffing混沌系统阈值确定方法. 物理学报, 2020, 69(16): 160501. doi: 10.7498/aps.69.20191642
    [2] 王兴元, 王明军. 超混沌Lorenz系统. 物理学报, 2007, 56(9): 5136-5141. doi: 10.7498/aps.56.5136
    [3] 孙克辉, 杨静利, 丁家峰, 盛利元. 单参数Lorenz混沌系统的电路设计与实现. 物理学报, 2010, 59(12): 8385-8392. doi: 10.7498/aps.59.8385
    [4] 郭会军, 刘君华. 基于径向基函数神经网络的Lorenz混沌系统滑模控制. 物理学报, 2004, 53(12): 4080-4086. doi: 10.7498/aps.53.4080
    [5] 李航, 申永军, 杨绍普, 彭孟菲, 韩彦军. Duffing系统的主-超谐联合共振. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201059
    [6] 唐友福, 刘树林, 雷娜, 姜锐红, 刘颖慧. 基于广义局部频率的Duffing系统频域特征分析. 物理学报, 2012, 61(17): 170504. doi: 10.7498/aps.61.170504
    [7] 唐国宁, 罗晓曙. 混沌系统的预测反馈控制. 物理学报, 2004, 53(1): 15-20. doi: 10.7498/aps.53.15
    [8] 李文林, 宋运忠. 不确定非线性系统混沌反控制. 物理学报, 2008, 57(1): 51-55. doi: 10.7498/aps.57.51
    [9] 李 爽, 徐 伟, 李瑞红, 李玉鹏. 异结构系统混沌同步的新方法. 物理学报, 2006, 55(11): 5681-5687. doi: 10.7498/aps.55.5681
    [10] 王杰智, 陈增强, 袁著祉. 一个新的混沌系统及其性质研究. 物理学报, 2006, 55(8): 3956-3963. doi: 10.7498/aps.55.3956
    [11] 李清都, 谭宇玲, 杨芳艳. 连续时间系统二维不稳定流形的异构算法. 物理学报, 2011, 60(3): 030206. doi: 10.7498/aps.60.030206
    [12] 郝建红, 孙志华, 许海波. 干扰信号对两种混沌加密系统的影响及分析. 物理学报, 2007, 56(12): 6857-6864. doi: 10.7498/aps.56.6857
    [13] 仓诗建, 陈增强, 袁著祉. 一个新四维非自治超混沌系统的分析与电路实现. 物理学报, 2008, 57(3): 1493-1501. doi: 10.7498/aps.57.1493
    [14] 罗明伟, 罗小华, 李华青. 一类四维多翼混沌系统及其电路实现. 物理学报, 2013, 62(2): 020512. doi: 10.7498/aps.62.020512
    [15] 王启光, 支 蓉, 张增平. Lorenz系统长程相关性研究. 物理学报, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
    [16] 李保生, 丁瑞强, 李建平, 钟权加. 强迫Lorenz系统的可预报性研究. 物理学报, 2017, 66(6): 060503. doi: 10.7498/aps.66.060503
    [17] 黎爱兵, 张立凤, 项杰. 外强迫对Lorenz系统初值可预报性的影响. 物理学报, 2012, 61(11): 119202. doi: 10.7498/aps.61.119202
    [18] 贾红艳, 陈增强, 薛薇. 分数阶Lorenz系统的分析及电路实现 . 物理学报, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [19] 李小娟, 徐振源, 谢青春, 王兵. 单向耦合下两个不同Lorenz系统的广义同步. 物理学报, 2010, 59(3): 1532-1539. doi: 10.7498/aps.59.1532
    [20] 张志森, 龚志强, 支蓉. 利用传递熵对Lorenz系统和Walker环流信息传输方向的分析. 物理学报, 2013, 62(12): 129203. doi: 10.7498/aps.62.129203
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1429
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-16
  • 修回日期:  2016-03-21
  • 刊出日期:  2016-06-05

改进的保群算法及其在混沌系统中的应用

  • 1. 中国科学院成都计算机应用研究所, 成都 610041;
  • 2. 中国科学院重庆绿色智能技术研究院, 自动推理与认知重庆市重点实验室, 重庆 400714;
  • 3. 中国科学院大学, 北京 100049
  • 通信作者: 唐卷, tangjuan0822@gmail.com
    基金项目: 

    国家重点基础研究发展计划(批准号: 2011CB302402)和国家自然科学基金(批准号: 61402537, 91118001)资助的课题.

摘要: 混沌系统的跟踪控制是近年来非线性控制领域研究的热点之一. 本文提出了一种基于快速下降控制方法的保群算法, 此方法使受控混沌系统能够快速稳定到相空间的一个不动点; 另外提出一种基于滑模控制方法的保群算法, 此方法使受控混沌系统能够快速跟踪一个确定的运动轨迹. 应用这两种新方法分别对两个经典的混沌系统(Lorenz系统和Duffing系统)进行了相应的数值实验, 实验结果表明这两种方法都具用较高的精度和稳定性.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回