Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of frictional force on subharmonic bifurcations of a completely inelastic ball bouncing on a vibrating table

Jiang Ze-Hui Guo Bo Zhang Feng Wang Fu-Li

Effect of frictional force on subharmonic bifurcations of a completely inelastic ball bouncing on a vibrating table

Jiang Ze-Hui, Guo Bo, Zhang Feng, Wang Fu-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The behavior of a completely inelastic ball bouncing on a vertically vibrating table in the presence of frictional force is investigated. The frictional force is assumed to be constant. It is found that the sequence of bifurcation, controlled solely by the normalized vibration acceleration Γ, is the same as that in the absence of frictional force, but the value of each bifurcation point becomes larger. In the bifurcation diagram of ball flight time, the structure consisting of an infinity of bifurcation cascades in a narrow range of Γ is observed. Compared with that of no frictional force, it is longitudinally compressed and transversely stretched, and has a different fractal property. A comparison with the bifurcations observed in vertically vibrated granular beds is also made. When the fractional force is set to be 20%—30% of the whole weight of the particles, the results from the bouncing ball model are in good agreement with experimental observations.
    • Funds:
    [1]

    Tufillaro N B, Abbott T, Reilly J 1992 An Experimental Approach to Nonlinear Dynamics and Chaos (New York: Addison-Wesley Publishing Company)

    [2]

    Pierański P 1988 Phys. Rev. A 37 1782

    [3]

    Holmes P J 1982 J. Sound Vib. 84 173

    [4]

    Mehta A, Luck J M 1990 Phys. Rev. Lett. 65 393

    [5]

    Luck J M, Mehta A 1993 Phys. Rev. E 48 3988

    [6]

    Jiang Z H, Zheng R H, Zhao H F, Wu J 2007 Acta Phys. Sin. 56 3727 (in Chinese)[姜泽辉、郑瑞华、赵海发、吴 晶 2007 物理学报 56 3727]

    [7]

    Jiang Z H, Zhao H F, Zheng R H 2009 Acta Phys. Sin. 58 7579 (in Chinese)[姜泽辉、赵海发、郑瑞华 2009 物理学报 58 7579]

    [8]

    Gilet T, Vandewalle N, Dorbolo S 2009 Phys. Rev. E 79 055201

    [9]

    Melo F, Umbanhowar P B, Swinney H L 1995 Phys. Rev. Lett. 75 3838

    [10]

    Moon S J, Shattuck M D, Bizon C, Goldman D I, Swift J B, Swinney H L 2001 Phys. Rev. E 65 11301

    [11]

    Luding S, Clément E, Blumen A, Rajchenbach J, Duran J 1994 Phys. Rev. E 49 1634

    [12]

    Douady S, Fauve S, Laroche C 1989 Europhys. Lett. 8 621

    [13]

    Wassgren C R, Brennen C E, Hunt M L 1996 J. Appl. Mech. 63 712

    [14]

    Aoki K M, Akiyama T, Yamamoto K, Yoshikawa T 1997 Europhys. Lett. 40 159

    [15]

    Jiang Z H, Wang Y Y, Wu J 2006 Europhys. Lett. 74 417

    [16]

    Jiang Z H, Li B, Zhao H F, Wang Y Y, Dai Z B 2005 Acta Phys. Sin. 54 1273 (in Chinese)[姜泽辉、李 斌、赵海发、 王运鹰、戴智斌 2005 物理学报 54 1273] 〖17] Jiang Z H, Liu X Y, Peng Y J, Li J W 2005 Acta Phys. Sin. 54 5692 (in Chinese)[姜泽辉、刘新影、彭雅晶、李建伟 2005 物理学报 54 5692]

    [17]

    Pastor J M, Maza D, Zuriguel I, Garcimartín A, Boudet J F 2007 Physica D 232 128

    [18]

    Ho C K, Webb S W 2006 Gas Transport in Porous Media (Dordrecht: Springer) pp5—26

    [19]

    Nield D A, Bejan A 2006 Convection in Porous Media (3rd ed) (New York: Springer) Chap 1

    [20]

    Pak H K, Doorn E V, Behringer R P 1995 Phys. Rev. Lett. 74 4643

    [21]

    Yan X, Shi Q, Hou M, Lu K, Chan C K 2003 Phys. Rev. Lett. 91 14302

    [22]

    Mbius M E, Cheng X, Eshuis P, Karczmar G S, Nagel S R, Jaeger H M 2005 Phys. Rev.E 72 011304

    [23]

    Akiyama T, Kimura N, Iguchi T 1996 Powder Technol. 89 133

    [24]

    Akiyama T, Yoshikawa T 1999 Powder Technol. 103 139

    [25]

    Jiang Z H, Jing Y F, Zhao H F, Zheng R H 2009 Acta Phys. Sin. 58 5923 (in Chinese) [姜泽辉、荆亚芳、赵海发、郑瑞华 2009 物理学报 58 5923]

    [26]

    Evasque P, Szmatula E, Denis J P 1990 Europhys. Lett. 12 623

    [27]

    Knight J B, Jaeger H M, Nagel S R 1993 Phys. Rev. Lett. 70 3728

    [28]

    Jiang Z H, Wang Y Y, Wu J 2006 Acta Phys. Sin. 55 4748 (in Chinese) [姜泽辉、王运鹰、吴 晶 2006 物理学报 55 4748]

    [29]

    Zeilstra C, Collignon J G, van der Hoef M A, Deen N G, Kuipers J A M 2008 Powder Technol. 184 166

  • [1]

    Tufillaro N B, Abbott T, Reilly J 1992 An Experimental Approach to Nonlinear Dynamics and Chaos (New York: Addison-Wesley Publishing Company)

    [2]

    Pierański P 1988 Phys. Rev. A 37 1782

    [3]

    Holmes P J 1982 J. Sound Vib. 84 173

    [4]

    Mehta A, Luck J M 1990 Phys. Rev. Lett. 65 393

    [5]

    Luck J M, Mehta A 1993 Phys. Rev. E 48 3988

    [6]

    Jiang Z H, Zheng R H, Zhao H F, Wu J 2007 Acta Phys. Sin. 56 3727 (in Chinese)[姜泽辉、郑瑞华、赵海发、吴 晶 2007 物理学报 56 3727]

    [7]

    Jiang Z H, Zhao H F, Zheng R H 2009 Acta Phys. Sin. 58 7579 (in Chinese)[姜泽辉、赵海发、郑瑞华 2009 物理学报 58 7579]

    [8]

    Gilet T, Vandewalle N, Dorbolo S 2009 Phys. Rev. E 79 055201

    [9]

    Melo F, Umbanhowar P B, Swinney H L 1995 Phys. Rev. Lett. 75 3838

    [10]

    Moon S J, Shattuck M D, Bizon C, Goldman D I, Swift J B, Swinney H L 2001 Phys. Rev. E 65 11301

    [11]

    Luding S, Clément E, Blumen A, Rajchenbach J, Duran J 1994 Phys. Rev. E 49 1634

    [12]

    Douady S, Fauve S, Laroche C 1989 Europhys. Lett. 8 621

    [13]

    Wassgren C R, Brennen C E, Hunt M L 1996 J. Appl. Mech. 63 712

    [14]

    Aoki K M, Akiyama T, Yamamoto K, Yoshikawa T 1997 Europhys. Lett. 40 159

    [15]

    Jiang Z H, Wang Y Y, Wu J 2006 Europhys. Lett. 74 417

    [16]

    Jiang Z H, Li B, Zhao H F, Wang Y Y, Dai Z B 2005 Acta Phys. Sin. 54 1273 (in Chinese)[姜泽辉、李 斌、赵海发、 王运鹰、戴智斌 2005 物理学报 54 1273] 〖17] Jiang Z H, Liu X Y, Peng Y J, Li J W 2005 Acta Phys. Sin. 54 5692 (in Chinese)[姜泽辉、刘新影、彭雅晶、李建伟 2005 物理学报 54 5692]

    [17]

    Pastor J M, Maza D, Zuriguel I, Garcimartín A, Boudet J F 2007 Physica D 232 128

    [18]

    Ho C K, Webb S W 2006 Gas Transport in Porous Media (Dordrecht: Springer) pp5—26

    [19]

    Nield D A, Bejan A 2006 Convection in Porous Media (3rd ed) (New York: Springer) Chap 1

    [20]

    Pak H K, Doorn E V, Behringer R P 1995 Phys. Rev. Lett. 74 4643

    [21]

    Yan X, Shi Q, Hou M, Lu K, Chan C K 2003 Phys. Rev. Lett. 91 14302

    [22]

    Mbius M E, Cheng X, Eshuis P, Karczmar G S, Nagel S R, Jaeger H M 2005 Phys. Rev.E 72 011304

    [23]

    Akiyama T, Kimura N, Iguchi T 1996 Powder Technol. 89 133

    [24]

    Akiyama T, Yoshikawa T 1999 Powder Technol. 103 139

    [25]

    Jiang Z H, Jing Y F, Zhao H F, Zheng R H 2009 Acta Phys. Sin. 58 5923 (in Chinese) [姜泽辉、荆亚芳、赵海发、郑瑞华 2009 物理学报 58 5923]

    [26]

    Evasque P, Szmatula E, Denis J P 1990 Europhys. Lett. 12 623

    [27]

    Knight J B, Jaeger H M, Nagel S R 1993 Phys. Rev. Lett. 70 3728

    [28]

    Jiang Z H, Wang Y Y, Wu J 2006 Acta Phys. Sin. 55 4748 (in Chinese) [姜泽辉、王运鹰、吴 晶 2006 物理学报 55 4748]

    [29]

    Zeilstra C, Collignon J G, van der Hoef M A, Deen N G, Kuipers J A M 2008 Powder Technol. 184 166

  • [1] Jiang Ze-Hui, Zhao Hai-Fa, Zheng Rui-Hua. Fractal characterization for subharmonic motion of completely inelastic bouncing ball. Acta Physica Sinica, 2009, 58(11): 7579-7583. doi: 10.7498/aps.58.7579
    [2] Jiang Ze-Hui, Zheng Rui-Hua, Zhao Hai-Fa, Wu Jing. Dynamical behavior of a completely inelastic ball bouncing on a vibrating plate. Acta Physica Sinica, 2007, 56(7): 3727-3732. doi: 10.7498/aps.56.3727
    [3] Jiang Ze-Hui, Han Hong, Li Xiao-Ran, Wang Fu-Li. Effect of air damping on dynemical behaviors of a completely inelastic bouncing ball. Acta Physica Sinica, 2012, 61(24): 240502. doi: 10.7498/aps.61.240502
    [4] Jiang Ze-Hui, Jing Ya-Fang, Zhao Hai-Fa, Zheng Rui-Hua. Effects of subharmonic motion on size segregation in vertically vibrated granular materials. Acta Physica Sinica, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [5] Han Hong, Jiang Ze-Hui, Li Xiao-Ran, Lü Jing,  Zhang Rui, Ren Jie-Ji. Effect of wall friction on subharmonic bifurcations of impact in vertically vibrated granular beds. Acta Physica Sinica, 2013, 62(11): 114501. doi: 10.7498/aps.62.114501
    [6] Jiang Ze-Hui, Liu Xin-Ying, Peng Ya-Jing, Li Jian-Wei. Period doubling motion in vertically vibrated granular beds. Acta Physica Sinica, 2005, 54(12): 5692-5698. doi: 10.7498/aps.54.5692
    [7] Jiang Ze-Hui, Li Bin, Zhao Hai-Fa, Wang Yun-Ying, Dai Zhi-Bin. Phenomena of impact bifurcations in vertically vibrated granular beds. Acta Physica Sinica, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [8] Jiang Ze-Hui, Wang Yun-Ying, Wu Jing. Motion modes of granular particles in a vibrating narrow tube. Acta Physica Sinica, 2006, 55(9): 4748-4753. doi: 10.7498/aps.55.4748
    [9] Shu Xue-Ming, Shen Shi-Fei, Liu Yong-Jin, Yuan Hong-Yong, Fan Wei-Cheng, Fang Jun. Study on fractal coagulation characteristics of fire smoke particles. Acta Physica Sinica, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [10] He Fei-Fei, Peng Zheng, Yan Xi-Ping, Jiang Yi-Min. Energy dissipation and periodic segregation of vibrated binary granular mixtures. Acta Physica Sinica, 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [11] Tang Jia-Shi, Ouyang Ke-Jian. Controlling the period-doubling bifurcation of logistic model. Acta Physica Sinica, 2006, 55(9): 4437-4441. doi: 10.7498/aps.55.4437
    [12] Wang Rui, Feng Jin-Qian, Xu Wei. Period-doubling bifurcation of stochastic Duffing one-sided constraint system. Acta Physica Sinica, 2006, 55(11): 5733-5739. doi: 10.7498/aps.55.5733
    [13] Zhang Bo, Qiu Dong-Yuan, Wang Xue-Mei. Mechanism of period-doubling bifurcation in DCM DC-DC converter. Acta Physica Sinica, 2008, 57(5): 2728-2736. doi: 10.7498/aps.57.2728
    [14] Yang Ru, Chu Li-Li, Zhang Bo. Research of fine structure and universal constants of bifurcation in converters. Acta Physica Sinica, 2008, 57(5): 2770-2778. doi: 10.7498/aps.57.2770
    [15] Li Guan-Lin, Li Chun-Yang, Chen Xi-You, Mu Xian-Min. Study on period doubling bifurcation in current-mode SEPIC converter. Acta Physica Sinica, 2012, 61(17): 170506. doi: 10.7498/aps.61.170506
    [16] Zhou Zhi-Gang, Shi Yu-Ren, Liu Cong-Bo, Wang Guang-Hui, Yang Hong-Juan. Study on the dynamics of an inelastic bouncing ball. Acta Physica Sinica, 2012, 61(20): 200501. doi: 10.7498/aps.61.200501
    [17] Zhang Hang, Guo Yun-Bo, Chen Xiao, Wang Duan, Cheng Peng-Jun. The distribution of a granular pile under impact. Acta Physica Sinica, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [18] Ji Shun-Ying, Li Peng-Fei, Chen Xiao-Dong. Experiments on shock-absorbing capacity of granular matter under impact load. Acta Physica Sinica, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [19] Xu Wei, Li Wei, Jin Yan-Fei, Ma Shao-Juan. Period-doubling bifurcation analysis of stochastic van der Pol system via Chebyshev polynomial approximation. Acta Physica Sinica, 2005, 54(8): 3508-3515. doi: 10.7498/aps.54.3508
    [20] Wang Xiao-Qing, Dai Dong, Hao Yan-Peng, Li Li-Cheng. Experimental confirmation on period-doubling bifurcation and chaos in dielectric barrier discharge in helium at atmospheric pressure. Acta Physica Sinica, 2012, 61(23): 230504. doi: 10.7498/aps.61.230504
  • Citation:
Metrics
  • Abstract views:  4235
  • PDF Downloads:  947
  • Cited By: 0
Publishing process
  • Received Date:  13 March 2010
  • Accepted Date:  13 July 2010
  • Published Online:  05 June 2010

Effect of frictional force on subharmonic bifurcations of a completely inelastic ball bouncing on a vibrating table

  • 1. Department of Physics, Harbin Institute of Technology, Harbin 150001, China

Abstract: The behavior of a completely inelastic ball bouncing on a vertically vibrating table in the presence of frictional force is investigated. The frictional force is assumed to be constant. It is found that the sequence of bifurcation, controlled solely by the normalized vibration acceleration Γ, is the same as that in the absence of frictional force, but the value of each bifurcation point becomes larger. In the bifurcation diagram of ball flight time, the structure consisting of an infinity of bifurcation cascades in a narrow range of Γ is observed. Compared with that of no frictional force, it is longitudinally compressed and transversely stretched, and has a different fractal property. A comparison with the bifurcations observed in vertically vibrated granular beds is also made. When the fractional force is set to be 20%—30% of the whole weight of the particles, the results from the bouncing ball model are in good agreement with experimental observations.

Reference (29)

Catalog

    /

    返回文章
    返回