Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Approximate solution of solitary wave for a class of generalized nonlinear disturbed dispersive equation

Mo Jia-Qi Chen Xian-Feng

Approximate solution of solitary wave for a class of generalized nonlinear disturbed dispersive equation

Mo Jia-Qi, Chen Xian-Feng
PDF
Get Citation
  • The approximate solution for a class of nonlinear disturbed dispersive equation is considered using a simple and valid technique. We first introduce the solitary wave solution of the corresponding typical differential equation, and then the approximate solution of the singular solitary wave for an original nonlinear disturbed dispersive equation is obtained using the homotopic mapping method.
    • Funds:
    [1]

    [1]McPhaden M J,Zhang D 2002 Nature 415 603

    [2]

    [2]Gu D F,Philander S G H 1997 Science 275 805

    [3]

    [3]Ma S H,Qiang J Y,Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese)[马松华、强继业、方建平 2007 物理学报 56 620]

    [4]

    [4]Ma S H,Qiang J Y,Fang J P 2007 Comm. Theor. Phys. 48 662

    [5]

    [5]Loutsenko I 2006 Comm. Math. Phys. 268 465

    [6]

    [6]Gedalin M 1998 Phys. Plasmas 5 127

    [7]

    [7]Parkes E J 2008 Chaos Solitons Fractals 38 154

    [8]

    [8]Wang M L 1995 Phys. Lett. A 199 169

    [9]

    [9]Sirendaoreji J S 2003 Phys. Lett. A309 387

    [10]

    [10]Yang J R,Mao J J 2008 Chin. Phys. Lett. 25 1527

    [11]

    [11]Gao Y,Tang X Y 2007 Commum. Theor. Phys. 48 961

    [12]

    [12]Yang J R,Mao J J 2008 Chin. Phys. B 17 4337

    [13]

    [13]Pan L X,Zuo W M,Yan J R 2005 Acta Phys. Sin. 54 1 (in Chinese)[潘留仙、左伟明、颜家壬 2005 物理学报 54 1]

    [14]

    [14]Lu D C,Hong B J,Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese)[卢殿臣、烘宝剑、田立新 2006 物理学报 55 5617]

    [15]

    [15]Tapgetusang,Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese)[套格图桑、斯仁道尔吉 2009 物理学报 58 2121]

    [16]

    [16]Rosennau P,Hyman M 1933 Phys. Rev. Lett. 70 564

    [17]

    [17]Yin L J,Tian L X 2009 Acta Phys. Sin. 58 3632 (in Chinese)[殷利久、田立新 2009 物理学报 58 3632]

    [18]

    [18]Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method(New York,CRC Press Co)

    [19]

    [19]He J H 2002 Approximate Analytical Methods in Engineering and Sciences (Shengzhou: Henan Science and Technology Press) (in Chinese)[何吉欢 2002 工程和科学计算中的近似分析方法 (郑州 河南科学技术出版社)]

    [20]

    [20]Hovhannisyan G.,Vulanovic R 2008 Nonlinear Stud. 15 297

    [21]

    [21]Graef J R,Kong L 2008 Math. Proc.Camb. Philos. Soc. 145 489

    [22]

    [22]Barbu L,Cosma E 2009 J. Math. Anal. Appl. 351 392

    [23]

    [23]Ramos M 2009 J. Math. Anal. Appl. 352 246

    [24]

    [24]Mo J Q 1989 Science in ChinaSer A 32 1306

    [25]

    [25]Mo J Q,Lin W T 2008 J. Sys. Sci. & Complexity 20 119

    [26]

    [26]Mo J Q,Wang H 2007 Acta Ecologica Sinica 27 4366

    [27]

    [27]Mo J Q,Zhu J,Wang H 2003 Prog. Nat. Sci. 13 768

    [28]

    [28]Mo J Q,Zhang W J,He M 2007 Acta Phys. Sin. 56 1843 (in Chinese)[莫嘉琪、张伟江、何 铭 2006 物理学报 56 1843]

    [29]

    [29]Mo J Q,Zhang W J,Chen X F 2007 Acta Phys. Sin. 56 6169 (in Chinese)[莫嘉琪、张伟江、陈贤峰 2007 物理学报 56 6169]

    [30]

    [30]Mo J Q,Yao J S 2008 Acta Phys. Sin. 57 7419 (in Chinese)[莫嘉琪、姚静荪 2008 物理学报 57 7419]

    [31]

    [31]Mo J Q 2009 Chin. Phys. Lett. 26 010204-1

    [32]

    [32]Mo J Q 2009 Acta Phys. Sin. 58 695 (in Chinese)[莫嘉琪 2009 物理学报 58 695]

    [33]

    [33]Mo J Q 2009 Chin. Phys. Lett. 26 060202-1

    [34]

    [34]Mo J Q 2009 Acta Phys. Sin. 58 2930 (in Chinese)[莫嘉琪 2009 物理学报 58 2930]

    [35]

    [35]Mo J Q 2009 Science in China,Ser. G 52 1007

    [36]

    [36]Mo J Q,Zhang W J,He M 2006 Acta Phys. Sin. 55 3233 (in Chinese)[莫嘉琪、张伟江、何铭 2006 物理学报 55 3233]

    [37]

    [37]Mo J Q,Lin W T,Wang H 2008 Chin. Geographical Sci. 18 193

    [38]

    [38]Mo J Q,Lin W T,Wang H 2007 Prog. Nat. Sci. 17 230

    [39]

    [39]Mo J Q,Lin W T,Lin Y H 2007 Acta Phys. Sin. 56 3127 (in Chinese)[莫嘉琪、林万涛、林一骅 2007 物理学报 56 1843]

    [40]

    [40]Mo J Q,Lin W T,Wang H 2007 Chin. Phys. 16 951

    [41]

    [41]Mo J Q,Lin W T 2008 Chin. Phys. B 17 370

    [42]

    [42]Mo J Q,Lin W T 2008 Chin. Phys. B 17 743

  • [1]

    [1]McPhaden M J,Zhang D 2002 Nature 415 603

    [2]

    [2]Gu D F,Philander S G H 1997 Science 275 805

    [3]

    [3]Ma S H,Qiang J Y,Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese)[马松华、强继业、方建平 2007 物理学报 56 620]

    [4]

    [4]Ma S H,Qiang J Y,Fang J P 2007 Comm. Theor. Phys. 48 662

    [5]

    [5]Loutsenko I 2006 Comm. Math. Phys. 268 465

    [6]

    [6]Gedalin M 1998 Phys. Plasmas 5 127

    [7]

    [7]Parkes E J 2008 Chaos Solitons Fractals 38 154

    [8]

    [8]Wang M L 1995 Phys. Lett. A 199 169

    [9]

    [9]Sirendaoreji J S 2003 Phys. Lett. A309 387

    [10]

    [10]Yang J R,Mao J J 2008 Chin. Phys. Lett. 25 1527

    [11]

    [11]Gao Y,Tang X Y 2007 Commum. Theor. Phys. 48 961

    [12]

    [12]Yang J R,Mao J J 2008 Chin. Phys. B 17 4337

    [13]

    [13]Pan L X,Zuo W M,Yan J R 2005 Acta Phys. Sin. 54 1 (in Chinese)[潘留仙、左伟明、颜家壬 2005 物理学报 54 1]

    [14]

    [14]Lu D C,Hong B J,Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese)[卢殿臣、烘宝剑、田立新 2006 物理学报 55 5617]

    [15]

    [15]Tapgetusang,Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese)[套格图桑、斯仁道尔吉 2009 物理学报 58 2121]

    [16]

    [16]Rosennau P,Hyman M 1933 Phys. Rev. Lett. 70 564

    [17]

    [17]Yin L J,Tian L X 2009 Acta Phys. Sin. 58 3632 (in Chinese)[殷利久、田立新 2009 物理学报 58 3632]

    [18]

    [18]Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method(New York,CRC Press Co)

    [19]

    [19]He J H 2002 Approximate Analytical Methods in Engineering and Sciences (Shengzhou: Henan Science and Technology Press) (in Chinese)[何吉欢 2002 工程和科学计算中的近似分析方法 (郑州 河南科学技术出版社)]

    [20]

    [20]Hovhannisyan G.,Vulanovic R 2008 Nonlinear Stud. 15 297

    [21]

    [21]Graef J R,Kong L 2008 Math. Proc.Camb. Philos. Soc. 145 489

    [22]

    [22]Barbu L,Cosma E 2009 J. Math. Anal. Appl. 351 392

    [23]

    [23]Ramos M 2009 J. Math. Anal. Appl. 352 246

    [24]

    [24]Mo J Q 1989 Science in ChinaSer A 32 1306

    [25]

    [25]Mo J Q,Lin W T 2008 J. Sys. Sci. & Complexity 20 119

    [26]

    [26]Mo J Q,Wang H 2007 Acta Ecologica Sinica 27 4366

    [27]

    [27]Mo J Q,Zhu J,Wang H 2003 Prog. Nat. Sci. 13 768

    [28]

    [28]Mo J Q,Zhang W J,He M 2007 Acta Phys. Sin. 56 1843 (in Chinese)[莫嘉琪、张伟江、何 铭 2006 物理学报 56 1843]

    [29]

    [29]Mo J Q,Zhang W J,Chen X F 2007 Acta Phys. Sin. 56 6169 (in Chinese)[莫嘉琪、张伟江、陈贤峰 2007 物理学报 56 6169]

    [30]

    [30]Mo J Q,Yao J S 2008 Acta Phys. Sin. 57 7419 (in Chinese)[莫嘉琪、姚静荪 2008 物理学报 57 7419]

    [31]

    [31]Mo J Q 2009 Chin. Phys. Lett. 26 010204-1

    [32]

    [32]Mo J Q 2009 Acta Phys. Sin. 58 695 (in Chinese)[莫嘉琪 2009 物理学报 58 695]

    [33]

    [33]Mo J Q 2009 Chin. Phys. Lett. 26 060202-1

    [34]

    [34]Mo J Q 2009 Acta Phys. Sin. 58 2930 (in Chinese)[莫嘉琪 2009 物理学报 58 2930]

    [35]

    [35]Mo J Q 2009 Science in China,Ser. G 52 1007

    [36]

    [36]Mo J Q,Zhang W J,He M 2006 Acta Phys. Sin. 55 3233 (in Chinese)[莫嘉琪、张伟江、何铭 2006 物理学报 55 3233]

    [37]

    [37]Mo J Q,Lin W T,Wang H 2008 Chin. Geographical Sci. 18 193

    [38]

    [38]Mo J Q,Lin W T,Wang H 2007 Prog. Nat. Sci. 17 230

    [39]

    [39]Mo J Q,Lin W T,Lin Y H 2007 Acta Phys. Sin. 56 3127 (in Chinese)[莫嘉琪、林万涛、林一骅 2007 物理学报 56 1843]

    [40]

    [40]Mo J Q,Lin W T,Wang H 2007 Chin. Phys. 16 951

    [41]

    [41]Mo J Q,Lin W T 2008 Chin. Phys. B 17 370

    [42]

    [42]Mo J Q,Lin W T 2008 Chin. Phys. B 17 743

  • Citation:
Metrics
  • Abstract views:  3625
  • PDF Downloads:  1356
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2009
  • Accepted Date:  29 June 2009
  • Published Online:  15 March 2010

Approximate solution of solitary wave for a class of generalized nonlinear disturbed dispersive equation

  • 1. (1)安徽师范大学数学系,芜湖 241000;上海高校计算科学院E-研究院上海交通大学研究所,上海 200240; (2)上海交通大学数学系,上海 200240;上海高校计算科学院E-研究院上海交通大学研究所,上海 200240

Abstract: The approximate solution for a class of nonlinear disturbed dispersive equation is considered using a simple and valid technique. We first introduce the solitary wave solution of the corresponding typical differential equation, and then the approximate solution of the singular solitary wave for an original nonlinear disturbed dispersive equation is obtained using the homotopic mapping method.

Reference (42)

Catalog

    /

    返回文章
    返回