Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonorthogonal passive decoy-state quantum key distribution with a weak coherent state source

Zhou Yuan-Yuan Zhou Xue-Jun

Nonorthogonal passive decoy-state quantum key distribution with a weak coherent state source

Zhou Yuan-Yuan, Zhou Xue-Jun
PDF
Get Citation
  • A nonorthogonal passive decoy-state method is presented with a reconstructive weak coherent state source. The method dose not prepare decoy states actively and divides the receiver detection events into two groups, i.e., triggered components and nontriggered components, according to triggering situation of the sender detector. Both triggered and nontriggered components, as signal states and decoy states, are used to do some estimations and to generate secure key. The simulation results show that a better key generation rate and a longer secure transmission distance can be obtained with the nonorthogonal passive decoy-state method than with the existing passive methods, and that the performance is comparable to the theoretical limit of an active infinite decoy-state protocol. Furthermore, the nontriggered component contribution to key generation offsets the limitation of the detector low efficiency, and the performance of the method dose not depend on the detector efficiency of sender. Because decoy states need not be prepared actively, and our protocol is easy to implement and apply to quantum key distribution at high transmission rates.
    • Funds:
    [1]

    Hwang W Y 2003 Phys.Rev.Lett. 91 057901

    [2]
    [3]

    Wang X B 2005 Phys.Rev.Lett. 94 230503

    [4]
    [5]

    Wang X B 2005 Phys. Rev. A 72 012322

    [6]

    Lo H K, MA X F, Chen K 2005 Phys. Rew. Lett. 94 230504

    [7]
    [8]
    [9]

    Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304

    [10]
    [11]

    Peng C Z, Zhang J, Yang D, Gao W B, Ma H X, Yin H, Zeng H P, Yang T, Wang X B, Pan J W 2007 Phys. Rev. Lett. 98 010505

    [12]
    [13]

    Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G C 2008 Chin.Phys.Lett. 25 3547

    [14]

    Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rew. Lett. 100 090501

    [15]
    [16]

    Bennett C H , Brassard G 1984 Processing of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175

    [17]
    [18]
    [19]

    MA X F, Qi B, ZhaoY, Lo H K 2005 Phys. Rew. A 72 012326

    [20]
    [21]

    Li J B, Fang X M 2006 Chin. Phys. Lett. 23 775

    [22]
    [23]

    Wang Q,Wang X B,Guo G C 2007 Phys. Rew. A 75 012312

    [24]
    [25]

    Yin Z Q, Han Z F, Sun F W, Guo G C 2007 Phys. Rev. A 76 014304

    [26]
    [27]

    Mi J L, Wang F Q, Lin Q Q, Liang R S 2008 Chin. Phys. B 17 1178

    [28]
    [29]

    Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏、王金东、黄宇娴、刘颂豪、路 巍 2010 物理学报 59 287]

    [30]

    Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆、王发强、林青群、梁瑞生、刘颂豪 2008 物理学报 57 678]

    [31]
    [32]
    [33]

    Mauerer W,Silberhorn C 2007 Phys. Rew. A 75 050305

    [34]
    [35]

    Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503

    [36]

    Quan D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese) [权东晓、裴昌幸、朱畅华、刘 丹 2008 物理学报 57 5600]

    [37]
    [38]

    Ma Xiongfeng, Lo H K 2008 New Journal of Physics 10 073018

    [39]
    [40]

    Curty M, Moroder T, Ma X F, Ltkenhaus N 2009 Opt.Lett. 34 3238

    [41]
    [42]

    Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rew. A 81 022310

    [43]
    [44]
    [45]

    Scarani V, Acin A, Ribordy G, Gisi N 2004 Phys. Rev. Lett. 92 057901

    [46]
    [47]

    Fung C H F,Tamaki K,Lo H K 2006 Phys. Rew. A 73 012337

    [48]
    [49]

    Gottesman D, Lo H K, Ltkenhaus N, Preskill J 2004 Quantum Inform. Comput. 4 325

    [50]

    Gobby C, Yuan Z L, Shields A J 2004 Phys. Rew. Lett. 84 3762

    [51]
    [52]

    Wang X B 2007 Phys. Rew. A 75 052301

    [53]
    [54]

    Wang X B, Peng C Z, Zhang J, Yang L, Pan J W 2008 Phys. Rew. A 77 042311

    [55]
    [56]
    [57]

    Zhao Y, Qi Bing, Lo H K 2008 Phys. Rew. A 77 052327

    [58]

    Hu J Z, Wang X B 2010 Phys. Rew. A 82 012331

    [59]
  • [1]

    Hwang W Y 2003 Phys.Rev.Lett. 91 057901

    [2]
    [3]

    Wang X B 2005 Phys.Rev.Lett. 94 230503

    [4]
    [5]

    Wang X B 2005 Phys. Rev. A 72 012322

    [6]

    Lo H K, MA X F, Chen K 2005 Phys. Rew. Lett. 94 230504

    [7]
    [8]
    [9]

    Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304

    [10]
    [11]

    Peng C Z, Zhang J, Yang D, Gao W B, Ma H X, Yin H, Zeng H P, Yang T, Wang X B, Pan J W 2007 Phys. Rev. Lett. 98 010505

    [12]
    [13]

    Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G C 2008 Chin.Phys.Lett. 25 3547

    [14]

    Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rew. Lett. 100 090501

    [15]
    [16]

    Bennett C H , Brassard G 1984 Processing of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175

    [17]
    [18]
    [19]

    MA X F, Qi B, ZhaoY, Lo H K 2005 Phys. Rew. A 72 012326

    [20]
    [21]

    Li J B, Fang X M 2006 Chin. Phys. Lett. 23 775

    [22]
    [23]

    Wang Q,Wang X B,Guo G C 2007 Phys. Rew. A 75 012312

    [24]
    [25]

    Yin Z Q, Han Z F, Sun F W, Guo G C 2007 Phys. Rev. A 76 014304

    [26]
    [27]

    Mi J L, Wang F Q, Lin Q Q, Liang R S 2008 Chin. Phys. B 17 1178

    [28]
    [29]

    Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏、王金东、黄宇娴、刘颂豪、路 巍 2010 物理学报 59 287]

    [30]

    Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆、王发强、林青群、梁瑞生、刘颂豪 2008 物理学报 57 678]

    [31]
    [32]
    [33]

    Mauerer W,Silberhorn C 2007 Phys. Rew. A 75 050305

    [34]
    [35]

    Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503

    [36]

    Quan D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese) [权东晓、裴昌幸、朱畅华、刘 丹 2008 物理学报 57 5600]

    [37]
    [38]

    Ma Xiongfeng, Lo H K 2008 New Journal of Physics 10 073018

    [39]
    [40]

    Curty M, Moroder T, Ma X F, Ltkenhaus N 2009 Opt.Lett. 34 3238

    [41]
    [42]

    Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rew. A 81 022310

    [43]
    [44]
    [45]

    Scarani V, Acin A, Ribordy G, Gisi N 2004 Phys. Rev. Lett. 92 057901

    [46]
    [47]

    Fung C H F,Tamaki K,Lo H K 2006 Phys. Rew. A 73 012337

    [48]
    [49]

    Gottesman D, Lo H K, Ltkenhaus N, Preskill J 2004 Quantum Inform. Comput. 4 325

    [50]

    Gobby C, Yuan Z L, Shields A J 2004 Phys. Rew. Lett. 84 3762

    [51]
    [52]

    Wang X B 2007 Phys. Rew. A 75 052301

    [53]
    [54]

    Wang X B, Peng C Z, Zhang J, Yang L, Pan J W 2008 Phys. Rew. A 77 042311

    [55]
    [56]
    [57]

    Zhao Y, Qi Bing, Lo H K 2008 Phys. Rew. A 77 052327

    [58]

    Hu J Z, Wang X B 2010 Phys. Rew. A 82 012331

    [59]
  • [1] Zhou Yuan-Yuan, Zhang He-Qing, Zhou Xue-Jun, Tian Pei-Gen. Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source. Acta Physica Sinica, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [2] Wang Han, Yan Lian-Shan, Pan Wei, Luo Bin, Guo Zhen, Xu Ming-Feng. Performance analysis of decoy state quantum key distribution using two kinds of photon sources. Acta Physica Sinica, 2011, 60(3): 030304. doi: 10.7498/aps.60.030304
    [3] Jiao Rong-Zhen, Zhang Chao, Ma Hai-Qiang. Decoy-state quantum key distribution with practical light source. Acta Physica Sinica, 2011, 60(11): 110303. doi: 10.7498/aps.60.110303
    [4] Jiao Rong-Zhen, Tang Shao-Jie, Zhang Chao. Analysis of statistical fluctuation in decoy state quantum key distribution system. Acta Physica Sinica, 2012, 61(5): 050302. doi: 10.7498/aps.61.050302
    [5] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Multi-party multi-level quantum key distribution protocol based on entanglement swapping. Acta Physica Sinica, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
    [6] Guo Bang-Hong, Yang Li, Xiang Chong, Guan Chong, Wu Ling-An, Liu Song-Hao. Quantum key distribution system based on combined modulation. Acta Physica Sinica, 2013, 62(13): 130303. doi: 10.7498/aps.62.130303
    [7] Jiao Rong-Zhen, Ding Tian, Wang Wen-Ji, Ma Hai-Qiang. Analysis statistical fluctuation of passive untrusted source for quantum key distribution system. Acta Physica Sinica, 2013, 62(18): 180302. doi: 10.7498/aps.62.180302
    [8] An Xue-Bi, Yin Zhen-Qiang, Han Zheng-Fu. Macro-micro entanglement in optical system and its application in quantum key distribution. Acta Physica Sinica, 2015, 64(14): 140303. doi: 10.7498/aps.64.140303
    [9] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. A theoretical scheme for multi-user quantum authentication and key distribution in a network. Acta Physica Sinica, 2005, 54(9): 3995-3999. doi: 10.7498/aps.54.3995
    [10] Chen Jin-Jian, Han Zheng-Fu, Zhao Yi-Bo, Gui You-Zhen, Guo Guang-Can. The effect of balanced homodyne detection on continuous variable quantum key distribution. Acta Physica Sinica, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [11] Lu Yi-Qun, Wang Fa-Qiang, Zhao Feng, Hu Min, Lin Yi-Man, Liao Chang-Jun, Liu Song-Hao, Guo Bang-Hong. Real-time low-frequency vibration phase drift tracking and auto-compensation in phase-coded quantum key distribution system. Acta Physica Sinica, 2007, 56(7): 3695-3702. doi: 10.7498/aps.56.3695
    [12] Zhang Quan, Tang Chao-Jing, Zhang Shen-Qiang. . Acta Physica Sinica, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
    [13] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. A novel quantum key distribution scheme with unextendible product basis and exact entanglement basis. Acta Physica Sinica, 2005, 54(12): 5549-5553. doi: 10.7498/aps.54.5549
    [14] Zhao Feng. Simulation analysis of one-way error reconciliation protocol for quantum key distribution. Acta Physica Sinica, 2013, 62(20): 200303. doi: 10.7498/aps.62.200303
    [15] Lu Dao-Ming. The quantum properties of three-parameter two-mode squeezed number state. Acta Physica Sinica, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [16] Ma Ya-Yun, Feng Jin-Xia, Wan Zhen-Ju, Gao Ying-Hao, Zhang Kuan-Shou. Continuous variable quantum entanglement at 1.34 m. Acta Physica Sinica, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [17] Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning. Novel superconducting qubits and quantum physics. Acta Physica Sinica, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [18] Jiang Jin-Huan, Wang Yong-Long, Li Zi-Ping. Quantum theory of steady state photorefractive spatial solitons propagation . Acta Physica Sinica, 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
    [19] Tang Zhi-Lie, Li Ming, Wei Zheng-Jun, Lu Fei, Liao Chang-Jun, Liu Song-Hao. The quantum key distribution system based on polarization states produced by phase modulation. Acta Physica Sinica, 2005, 54(6): 2534-2539. doi: 10.7498/aps.54.2534
    [20] Zhang Ying-Jie, Xia Yun-Jie, Ren Ting-Qi, Du Xiu-Mei, Liu Yu-Ling. Quantum properties of the entangled coherent light field under the anti-Jaynes-Cummings model. Acta Physica Sinica, 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
  • Citation:
Metrics
  • Abstract views:  3527
  • PDF Downloads:  789
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2010
  • Accepted Date:  10 December 2010
  • Published Online:  15 October 2011

Nonorthogonal passive decoy-state quantum key distribution with a weak coherent state source

  • 1. Department of Communication Engineering, School of Electronic Engineering, Naval University of Engineering, Wuhan 430033,China

Abstract: A nonorthogonal passive decoy-state method is presented with a reconstructive weak coherent state source. The method dose not prepare decoy states actively and divides the receiver detection events into two groups, i.e., triggered components and nontriggered components, according to triggering situation of the sender detector. Both triggered and nontriggered components, as signal states and decoy states, are used to do some estimations and to generate secure key. The simulation results show that a better key generation rate and a longer secure transmission distance can be obtained with the nonorthogonal passive decoy-state method than with the existing passive methods, and that the performance is comparable to the theoretical limit of an active infinite decoy-state protocol. Furthermore, the nontriggered component contribution to key generation offsets the limitation of the detector low efficiency, and the performance of the method dose not depend on the detector efficiency of sender. Because decoy states need not be prepared actively, and our protocol is easy to implement and apply to quantum key distribution at high transmission rates.

Reference (59)

Catalog

    /

    返回文章
    返回