Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and study of miniaturized-element frequency selective surfaces

Xu Nian-Xi Feng Xiao-Guo Wang Yan-Song Chen Xin Gao Jin-Song

Design and study of miniaturized-element frequency selective surfaces

Xu Nian-Xi, Feng Xiao-Guo, Wang Yan-Song, Chen Xin, Gao Jin-Song
PDF
Get Citation
  • We propose a miniaturized-element frequency selective surface (MEFSS) by using the coupling mechanisms between capacitive surface and inductive surface, so the uint cell size will not be restricted by wavelength. In order to improve resonance stability performance with respect to different polarizations and incidence angles, according to the traditional FSS Y element, we create periodic elements of capacitive surface and inductive surface with Y shape and Y element array is in the form of equilateral triangle, The grid array and the effects of the parameteristics of Y loop element on the frequency response characteristics of MEFSS are calculated using the modal matching method. With filming technology and lithography, the corresponding capacitive surface and inductive surface between polyimide are produced and a prototype MEFFSS using freedom space method is examined. Both simulated and measured results obtained show that the MEFFSS constructed by using equilateral triangle Y element array has much better f0 resonance stability performance with respect to different polarizations and 60 incidence angles, and the -3 dB bandwidth reaches up to 7.6 GHz. We present a theoretical and experimental reference of MEFSS for the applications in large-angle incidence curved streamlined radome.
    • Funds:
    [1]

    Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys.Sin. 58 0505(in Chinese)[贾宏燕、高劲松、冯晓国、孙连春 2009 物理学报 58 0505]

    [2]

    Li X Q, Feng X G,Gao J S 2008 Acta Phys.Sin. 57 3193(in Chinese)[李小秋、冯晓国、高劲松 2008 物理学报 57 3193]

    [3]

    Gao J S,Wang S S, Feng X G, Xu N X,Zhao J L,Chen H 2010 Acta Phys.Sin. 59 7338(in Chinese)[高劲松、王珊珊、冯晓国、徐念喜、赵晶丽、陈 红 2010 物理学报 59 7338]

    [4]

    Munk B A 2000 Frequency Selective Surface: Theory and Design (New York: Wiley) p69-81

    [5]

    Sarabandi K, Behdad N 2007 IEEE Trans. on Anten. and Propag. 55 1239

    [6]

    Bayatpur F, Sarabandi K 2007 IEEE Anten. and Propag. Soc. Internat. Syppos. 15 3964

    [7]

    Chiu C N, Chang K P 2009 IEEE Anten. and Wireless Propag. Lett. 8 1175

    [8]

    Behdad N 2008 IEEE Radio and Wireless Symposium 22-24 347

    [9]

    Bayatpur F, Sarabandi K 2009 IEEE Transact. on Micro. Theory and Tech. 57 1433

    [10]

    Bayatpur F, Sarabandi K 2010 IEEE Transact. on Anten. and Propag. 58 1214

    [11]

    Chen C C 1973 IEEE Trans. Microwave Theory Tech. 21 1

    [12]

    Chen C C 1970 IEEE Trans. Microwave Theory Tech. 18 627

    [13]

    Chi H C, Mittra R 1990 IEEE Transact. on Anten. and Propag. 38 40

  • [1]

    Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys.Sin. 58 0505(in Chinese)[贾宏燕、高劲松、冯晓国、孙连春 2009 物理学报 58 0505]

    [2]

    Li X Q, Feng X G,Gao J S 2008 Acta Phys.Sin. 57 3193(in Chinese)[李小秋、冯晓国、高劲松 2008 物理学报 57 3193]

    [3]

    Gao J S,Wang S S, Feng X G, Xu N X,Zhao J L,Chen H 2010 Acta Phys.Sin. 59 7338(in Chinese)[高劲松、王珊珊、冯晓国、徐念喜、赵晶丽、陈 红 2010 物理学报 59 7338]

    [4]

    Munk B A 2000 Frequency Selective Surface: Theory and Design (New York: Wiley) p69-81

    [5]

    Sarabandi K, Behdad N 2007 IEEE Trans. on Anten. and Propag. 55 1239

    [6]

    Bayatpur F, Sarabandi K 2007 IEEE Anten. and Propag. Soc. Internat. Syppos. 15 3964

    [7]

    Chiu C N, Chang K P 2009 IEEE Anten. and Wireless Propag. Lett. 8 1175

    [8]

    Behdad N 2008 IEEE Radio and Wireless Symposium 22-24 347

    [9]

    Bayatpur F, Sarabandi K 2009 IEEE Transact. on Micro. Theory and Tech. 57 1433

    [10]

    Bayatpur F, Sarabandi K 2010 IEEE Transact. on Anten. and Propag. 58 1214

    [11]

    Chen C C 1973 IEEE Trans. Microwave Theory Tech. 21 1

    [12]

    Chen C C 1970 IEEE Trans. Microwave Theory Tech. 18 627

    [13]

    Chi H C, Mittra R 1990 IEEE Transact. on Anten. and Propag. 38 40

  • [1] Xu Nian-Xi, Gao Jin-Song, Feng Xiao-Guo. Study on the optimal design of frequency selective surfaces based on the discrete particle swarm optimization. Acta Physica Sinica, 2014, 63(13): 138401. doi: 10.7498/aps.63.138401
    [2] Lu Ge-Wu, Zhang Jian, Yang Jie-Ying, Zhang Tian-Xiang, Kou Yuan. Status and development of frequency selective surface radome. Acta Physica Sinica, 2013, 62(19): 198401. doi: 10.7498/aps.62.198401
    [3] Wang Xiu-Zhi, Gao Jin-Song, Xu Nian-Xi. Quick analysis of miniaturized-element frequency selective surface that loaded with lumped elements by using an equivalent circuit model. Acta Physica Sinica, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [4] Gao Jin-Song, Zhao Jing-Li, Sun Lian-Chun, Li Xiao-Qiu. A novel element of frequency selective surface for radome. Acta Physica Sinica, 2008, 57(6): 3803-3806. doi: 10.7498/aps.57.3803
    [5] Wang Xiu-Zhi, Gao Jin-Song, Xu Nian-Xi. Design and study on the dual-band radome with FSS operation at Ku-/Ka-band. Acta Physica Sinica, 2013, 62(23): 237302. doi: 10.7498/aps.62.237302
    [6] Yuan Zi-Dong, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Yang Qun, Li Wen-Qiang, Shang Kai. A novel frequency selective surface with stable performance and its application in microstrip antenna. Acta Physica Sinica, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [7] Feng Xiao-Guo, Gao Jin-Song, Li Xiao-Qiu. Optically transparent band-pass frequency selective surface. Acta Physica Sinica, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
    [8] Gao Jin-Song, Liang Feng-Chao, Wang Yan-Song, Chen Xin, Wang Shan-Shan. Multiband fractal cross dipole frequency selective surface. Acta Physica Sinica, 2011, 60(5): 050703. doi: 10.7498/aps.60.050703
    [9] Wang Jian-Bo, Lu Jun. Double screen frequency selective surface structure optimized by genetic algorithm. Acta Physica Sinica, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [10] Chen Xin, Gao Jin-Song, Xu Nian-Xi, Wang Yan-Song, Feng Xiao-Guo. The influence of dielectric truss on transmission characteristics of frequency selective surface. Acta Physica Sinica, 2012, 61(21): 217307. doi: 10.7498/aps.61.217307
  • Citation:
Metrics
  • Abstract views:  3612
  • PDF Downloads:  854
  • Cited By: 0
Publishing process
  • Received Date:  24 February 2011
  • Accepted Date:  31 March 2011
  • Published Online:  15 November 2011

Design and study of miniaturized-element frequency selective surfaces

  • 1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
  • 2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

Abstract: We propose a miniaturized-element frequency selective surface (MEFSS) by using the coupling mechanisms between capacitive surface and inductive surface, so the uint cell size will not be restricted by wavelength. In order to improve resonance stability performance with respect to different polarizations and incidence angles, according to the traditional FSS Y element, we create periodic elements of capacitive surface and inductive surface with Y shape and Y element array is in the form of equilateral triangle, The grid array and the effects of the parameteristics of Y loop element on the frequency response characteristics of MEFSS are calculated using the modal matching method. With filming technology and lithography, the corresponding capacitive surface and inductive surface between polyimide are produced and a prototype MEFFSS using freedom space method is examined. Both simulated and measured results obtained show that the MEFFSS constructed by using equilateral triangle Y element array has much better f0 resonance stability performance with respect to different polarizations and 60 incidence angles, and the -3 dB bandwidth reaches up to 7.6 GHz. We present a theoretical and experimental reference of MEFSS for the applications in large-angle incidence curved streamlined radome.

Reference (13)

Catalog

    /

    返回文章
    返回