Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of controllable defects on thermal conductance in a nanowire with a quantum box

Nie Liu-Ying Li Chun-Xian Zhou Xiao-Ping Cheng Fang Wang Cheng-Zhi

Effects of controllable defects on thermal conductance in a nanowire with a quantum box

Nie Liu-Ying, Li Chun-Xian, Zhou Xiao-Ping, Cheng Fang, Wang Cheng-Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By using the scattering-matrix method and the scalar model of elasticity, we investigate the effect of controllable defects on low temperature thermal conductance in a nanowire with a quantum box geometry. It is found that the thermal conductance can be controlled by adjusting the parameters of the defects. The size and the position of the defect can induce the variation in thermal conductance. It is also found that the behavior of the thermal conductance versus temperature is different for different types of defects.
    • Funds:
    [1]

    Wang X J, Wang L L, Huang W Q, Tang L M, Chen K Q 2006 Acta Phys. Sin. 55 3649 (in Chinese) [王新军、王玲玲、黄维清、唐黎明、陈克求 2006 物理学报 55 3649]

    [2]
    [3]

    Huang W Q, Chen K Q, Shuai Z G, Wang L L, Hu W Y 2004 Acta Phys. Sin. 53 2330 (in Chinese) [黄维清、陈克求、帅志刚、王玲玲、胡望宇 2004 物理学报 53 2330]

    [4]
    [5]

    Chen G 1998 Phys. Rev. B 57 14958

    [6]
    [7]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927

    [8]

    Glavin B A 2001 Phys. Rev. Lett. 86 4318

    [9]
    [10]

    Zou J, Balandin A 2001 J. Appl. Phys. 89 2932

    [11]
    [12]
    [13]

    Fon W, Schwab K C, Worlock J M, Roukes M L 2002 Phys. Rev. B 66 045302

    [14]
    [15]

    Li D Y, Wu Y Y, Kim P, Shi L, Yang P D, Majumdar A 2003 Appl. Phys. Lett. 83 2934

    [16]

    Chiatti O, Nicholls J T, Proskuryakov Y Y, Lumpkin N, Farrer I, Ritchie D A 2006 Phys. Rev. Lett. 97 056601

    [17]
    [18]
    [19]

    Wang J, Wang J S 2007 Appl. Phys. Lett. 90 241908

    [20]

    Peng X F, Chen K Q, Wan Q, Zou B S, Duan W H 2010 Phys. Rev. B 81 195317

    [21]
    [22]
    [23]

    Li B W, Wang L, Hu B B 2002 Phys. Rev. Lett. 88 223901

    [24]
    [25]

    Wang J S 2007 Phys. Rev. Lett. 99 160601

    [26]

    Kim P, Shi L, Majumdar A, McEuen P L 2001 Phys. Rev. Lett. 87 215502

    [27]
    [28]
    [29]

    Mingo N, Broido D A 2005 Phys.Rev.Lett. 95 096105

    [30]

    Chiu H Y, Deshpande V V, Ch. Postma H W, Lau C N, Miko C, Forro L, Bockrath M 2005 Phys. Rev. Lett. 95 226101

    [31]
    [32]

    Wang J S, Wang J, Zeng N 2006 Phys. Rev. B 74 033408

    [33]
    [34]

    Yamamoto T, Nakazawa Y, Watanabe K 2007 New J. Phys. 9 245

    [35]
    [36]
    [37]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [38]

    Song D, Chen G 2004 Appl. Phys. Lett. 84 687

    [39]
    [40]

    Chen D Z A, Narayanaswamy A, Chen G 2005 Phys. Rev. B 72 155435

    [41]
    [42]

    Satio K, Nakamura J, Natori A 2007 Phys. Rev. B 76 115409

    [43]
    [44]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [45]
    [46]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232

    [47]
    [48]

    Schwab K, Henriksen E A, Worlock J M, Roukes M L 2000 Nature (London) 404 974

    [49]
    [50]

    Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324

    [51]
    [52]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2003 J. Phys. D: Appl. Phys. 36 3027

    [53]
    [54]

    Chang C M, Geller M R 2005 Phys. Rev. B 71 125304

    [55]
    [56]
    [57]

    Santamore D H, Cross M C 2001 Phys. Rev. Lett. 87 115502

    [58]
    [59]

    Santamore D H, Cross M C 2001 Phys. Rev. B 63 184306

    [60]
    [61]

    Chen K Q, Li W X, Duan W H, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [62]
    [63]

    Nie L Y, Wang L L, Zhao L H, Huang W Q, Tang L M, Wang X J, Chen K Q 2006 Phys. Lett. A 359 234

    [64]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 J. Phys.: Condens. Matter 16 5049

    [65]
    [66]
    [67]

    Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y, Zou B S 2005 J. Appl. Phys. 98 093524

    [68]
    [69]

    Tang L M, Wang L L, Chen K Q, Huang W Q, Zou B S 2006 Appl. Phys. Lett. 88 163505

    [70]
    [71]

    Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324

    [72]
    [73]

    Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y 2005 Phys. Lett. A 336 245

    [74]
    [75]

    Peng X F, Chen K Q, Zou B S, Zhang Y 2007 Appl. Phys. Lett. 90 193502

    [76]
    [77]

    Tang L M, Wang Y, Wang D, Wang L L 2007 Acta Phys. Sin. 56 437 (in Chinese) [唐黎明、王 艳、王 丹、王玲玲 2007 物理学报 56 437 ]

    [78]

    Xie F, Chen K Q, Wang Y G, Zhang Y 2008 J. Appl. Phys. 103 084501

    [79]
    [80]
    [81]

    Xie F, Chen K Q, Wang Y G, Wan Q, Zou B S, Zhang Y 2008 J. Appl. Phys. 104 054312

    [82]

    Yao L J, Wang L L 2008 Acta Phys. Sin. 57 3100 (in Chinese) [姚凌江、王玲玲 2008 物理学报 57 3100]

    [83]
    [84]
    [85]

    Blencowe M P 1999 Phys. Rev. B 59 4992

    [86]
    [87]

    Joe Y S, Cosby R M, Dharma-Wardana M W C, Ulloa S E 1994 J. Appl. Phys. 76 4676

  • [1]

    Wang X J, Wang L L, Huang W Q, Tang L M, Chen K Q 2006 Acta Phys. Sin. 55 3649 (in Chinese) [王新军、王玲玲、黄维清、唐黎明、陈克求 2006 物理学报 55 3649]

    [2]
    [3]

    Huang W Q, Chen K Q, Shuai Z G, Wang L L, Hu W Y 2004 Acta Phys. Sin. 53 2330 (in Chinese) [黄维清、陈克求、帅志刚、王玲玲、胡望宇 2004 物理学报 53 2330]

    [4]
    [5]

    Chen G 1998 Phys. Rev. B 57 14958

    [6]
    [7]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927

    [8]

    Glavin B A 2001 Phys. Rev. Lett. 86 4318

    [9]
    [10]

    Zou J, Balandin A 2001 J. Appl. Phys. 89 2932

    [11]
    [12]
    [13]

    Fon W, Schwab K C, Worlock J M, Roukes M L 2002 Phys. Rev. B 66 045302

    [14]
    [15]

    Li D Y, Wu Y Y, Kim P, Shi L, Yang P D, Majumdar A 2003 Appl. Phys. Lett. 83 2934

    [16]

    Chiatti O, Nicholls J T, Proskuryakov Y Y, Lumpkin N, Farrer I, Ritchie D A 2006 Phys. Rev. Lett. 97 056601

    [17]
    [18]
    [19]

    Wang J, Wang J S 2007 Appl. Phys. Lett. 90 241908

    [20]

    Peng X F, Chen K Q, Wan Q, Zou B S, Duan W H 2010 Phys. Rev. B 81 195317

    [21]
    [22]
    [23]

    Li B W, Wang L, Hu B B 2002 Phys. Rev. Lett. 88 223901

    [24]
    [25]

    Wang J S 2007 Phys. Rev. Lett. 99 160601

    [26]

    Kim P, Shi L, Majumdar A, McEuen P L 2001 Phys. Rev. Lett. 87 215502

    [27]
    [28]
    [29]

    Mingo N, Broido D A 2005 Phys.Rev.Lett. 95 096105

    [30]

    Chiu H Y, Deshpande V V, Ch. Postma H W, Lau C N, Miko C, Forro L, Bockrath M 2005 Phys. Rev. Lett. 95 226101

    [31]
    [32]

    Wang J S, Wang J, Zeng N 2006 Phys. Rev. B 74 033408

    [33]
    [34]

    Yamamoto T, Nakazawa Y, Watanabe K 2007 New J. Phys. 9 245

    [35]
    [36]
    [37]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [38]

    Song D, Chen G 2004 Appl. Phys. Lett. 84 687

    [39]
    [40]

    Chen D Z A, Narayanaswamy A, Chen G 2005 Phys. Rev. B 72 155435

    [41]
    [42]

    Satio K, Nakamura J, Natori A 2007 Phys. Rev. B 76 115409

    [43]
    [44]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [45]
    [46]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232

    [47]
    [48]

    Schwab K, Henriksen E A, Worlock J M, Roukes M L 2000 Nature (London) 404 974

    [49]
    [50]

    Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324

    [51]
    [52]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2003 J. Phys. D: Appl. Phys. 36 3027

    [53]
    [54]

    Chang C M, Geller M R 2005 Phys. Rev. B 71 125304

    [55]
    [56]
    [57]

    Santamore D H, Cross M C 2001 Phys. Rev. Lett. 87 115502

    [58]
    [59]

    Santamore D H, Cross M C 2001 Phys. Rev. B 63 184306

    [60]
    [61]

    Chen K Q, Li W X, Duan W H, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [62]
    [63]

    Nie L Y, Wang L L, Zhao L H, Huang W Q, Tang L M, Wang X J, Chen K Q 2006 Phys. Lett. A 359 234

    [64]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 J. Phys.: Condens. Matter 16 5049

    [65]
    [66]
    [67]

    Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y, Zou B S 2005 J. Appl. Phys. 98 093524

    [68]
    [69]

    Tang L M, Wang L L, Chen K Q, Huang W Q, Zou B S 2006 Appl. Phys. Lett. 88 163505

    [70]
    [71]

    Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324

    [72]
    [73]

    Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y 2005 Phys. Lett. A 336 245

    [74]
    [75]

    Peng X F, Chen K Q, Zou B S, Zhang Y 2007 Appl. Phys. Lett. 90 193502

    [76]
    [77]

    Tang L M, Wang Y, Wang D, Wang L L 2007 Acta Phys. Sin. 56 437 (in Chinese) [唐黎明、王 艳、王 丹、王玲玲 2007 物理学报 56 437 ]

    [78]

    Xie F, Chen K Q, Wang Y G, Zhang Y 2008 J. Appl. Phys. 103 084501

    [79]
    [80]
    [81]

    Xie F, Chen K Q, Wang Y G, Wan Q, Zou B S, Zhang Y 2008 J. Appl. Phys. 104 054312

    [82]

    Yao L J, Wang L L 2008 Acta Phys. Sin. 57 3100 (in Chinese) [姚凌江、王玲玲 2008 物理学报 57 3100]

    [83]
    [84]
    [85]

    Blencowe M P 1999 Phys. Rev. B 59 4992

    [86]
    [87]

    Joe Y S, Cosby R M, Dharma-Wardana M W C, Ulloa S E 1994 J. Appl. Phys. 76 4676

  • [1] Peng Xiao-Fang, Wang Xin-Jun, Gong Zhi-Qiang, Chen Li-Qun. Acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with quantum dots. Acta Physica Sinica, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [2] Peng Xiao-Fang, Chen Li-Qun, Luo Yong-Feng, Liu Lin-Hong, Wang Kai-Jun. Acoustic phonon transport and thermal conductance in quantum waveguide with abrupt quantum junctions modulated with double T-shapedquantum structure. Acta Physica Sinica, 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [3] Ye Fu-Qiu, Li Ke-Min, Peng Xiao-Fang. Ballistic phonon transport and thermal conductance in multi-channel quantum structure at low temperatures. Acta Physica Sinica, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [4] Yao Ling-Jiang, Wang Ling-Ling. Characteristics of acoustic phonon transport and thermal conductance in quasi-one-dimensional quantum waveguides with semi-circular-arc cavity. Acta Physica Sinica, 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [5] Qing Qian-Jun, Zhou Xin, Xie Fang, Chen Li-Qun, Wang Xin-Jun, Tan Shi-Hua, Peng Xiao-Fang. Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions. Acta Physica Sinica, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [6] Zhou Xin, Gao Ren-Bin, Tan Shi-Hua, Peng Xiao-Fang, Jiang Xiang-Tao, Bao Ben-Gang. Influence of multi-cavity dislocation distribution on thermal conductance in graphene nanoribbons. Acta Physica Sinica, 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [7] Bao Zhi-Gang, Chen Yuan-Ping, Ouyang Tao, Yang Kai-Ke, Zhong Jian-Xin. Thermal transport in L-shaped graphene nano-junctions. Acta Physica Sinica, 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [8] Yao Hai-Feng, Xie Yue-E, Ouyang Tao, Chen Yuan-Ping. Thermal transport of graphene nanoribbons embedding linear defects. Acta Physica Sinica, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [9] Zhao Jun, Shen Cai-Xia, Zhou Fang, Xiong Ji-Wu. Influence of magnetic field on thermal conductivity of La2-xSrxCuO4 single crystals. Acta Physica Sinica, 2005, 54(8): 3845-3850. doi: 10.7498/aps.54.3845
    [10] Xiong Zhi_Ming, Zhang Qing_Chuan, Wu Xiao_Ping, Guo Zhe_Ying, Dong Feng_Liang, Miao Zheng_Yu, Chen Da_Peng, Li Chao_Bo. Optical-readout micro-cantilever array IR imaging system and performance analysis. Acta Physica Sinica, 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [11] Cai Wei-Ying, Li Zhi-Feng, Lu Wei, Li Shou-Rong, Liang Ping-Zhi. Heat conduction investigations of the Si bridge in infrared emitter using micro- Raman scattering. Acta Physica Sinica, 2003, 52(11): 2923-2928. doi: 10.7498/aps.52.2923
    [12] He Meng-Dong, Gong Zhi-Qiang. Acoustic-phonon transmission in multilayer heterojunctions. Acta Physica Sinica, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [13] LI YU-ZHANG, XU ZHONG-YING, GE WEI-KUN, XU JI-SONG, ZHENG BAO-ZHEN, ZHUANG WEI-HUA. NONEQUILIBRIUM PHONON EFFECTS IN HOT CARRIER RELAXATION PROCESSES OF MULTIPLE QUANTUM WELL STRUCTURES. Acta Physica Sinica, 1989, 38(9): 1540-1544. doi: 10.7498/aps.38.1540
    [14] Dong Hua-Feng, Wu Fu-Gen, Mu Zhong-Fei, Zhong Hui-Lin. Effect of basis configuration on acoustic band structure in two-dimensional complex phononic crystals. Acta Physica Sinica, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [15] Tang Li-Ming, Wang Yan, Wang Dan, Wang Ling-Ling. Effect of boundary conditions on phonon transmission in a dielectric quantum waveguide. Acta Physica Sinica, 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [16] TING CHIN-SEN, LEI XIAO-LIN. EFFECT OF COMBINED ACOUSTIC AND OPTICAL PHONON SCATTERING IN NONLINEAR ELECTRONIC TRANSPORT. Acta Physica Sinica, 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
    [17] Shu An-Qing, Wu Feng. Optimization of the performance of quantum thermoacoustic micro-cycle. Acta Physica Sinica, 2016, 65(16): 164303. doi: 10.7498/aps.65.164303
    [18] Li Wei-Zhi, Wang Jun. Numerical simulation of direct current method of measuring thermal conductivities of thin films. Acta Physica Sinica, 2012, 61(11): 114401. doi: 10.7498/aps.61.114401
    [19] Li Yi-Tong, Shen Liang-Ping, Wang Hao, Wang Han-Bin. Investigation on the thermal and electrical conductivity of water based zinc oxide nanofluids. Acta Physica Sinica, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [20] Jiang Fu-Shi, Zhao Cui-Lan. The phonon effect of qubit in quantum ring. Acta Physica Sinica, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
  • Citation:
Metrics
  • Abstract views:  3310
  • PDF Downloads:  525
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2010
  • Accepted Date:  28 January 2011
  • Published Online:  15 November 2011

Effects of controllable defects on thermal conductance in a nanowire with a quantum box

  • 1. School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China

Abstract: By using the scattering-matrix method and the scalar model of elasticity, we investigate the effect of controllable defects on low temperature thermal conductance in a nanowire with a quantum box geometry. It is found that the thermal conductance can be controlled by adjusting the parameters of the defects. The size and the position of the defect can induce the variation in thermal conductance. It is also found that the behavior of the thermal conductance versus temperature is different for different types of defects.

Reference (87)

Catalog

    /

    返回文章
    返回