搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原子操纵技术的人工量子结构研究

李宇昂 吴迪 王栋立 胡昊 潘毅

引用本文:
Citation:

基于原子操纵技术的人工量子结构研究

李宇昂, 吴迪, 王栋立, 胡昊, 潘毅

Investigation of artificial quantum structures constructed by atom manipulation

Li Yu-Ang, Wu Di, Wang Dong-Li, Hu Hao, Pan Yi
PDF
HTML
导出引用
  • 扫描隧道显微镜原子操纵技术是指利用扫描探针在特定材料表面以晶格为步长搬运单个原子或分子的技术.它是纳米尺度量子物理与器件研究领域一种独特而有力的研究手段. 利用这种手段, 人们能够以原子或分子为单元构筑某些常规生长或微加工方法难以制备的人工量子结构, 通过对格点原子、晶格尺寸、对称性、周期性的高度控制, 实现对局域电子态、自旋序、以及能带拓扑特性等量子效应的设计与调控. 原子操纵技术与超快测量及自动控制技术的结合, 使得人们能够进一步研究原子级精准的量子器件, 因而该技术成为探索未来器件新机理、新工艺的重要工具. 本文首先简介原子操纵方法的发展过程和技术要点, 然后分别介绍人工电子晶格、半导体表面人工量子点、磁性人工量子结构、人工结构中的信息存储与逻辑运算、单原子精度原型器件等方面的最新研究进展, 以及单原子刻蚀和自动原子操纵等方面的技术进展, 最后总结并展望原子操纵技术的应用前景和发展趋势.
    The atom manipulation technique based on scanning tunneling microscope refers to a method of relocating single atoms or molecules on a certain surface at atomic accuracy by using an atomically sharp tip, which is a unique and powerful tool for studying the quantum physics and prototype quantum devices on a nanometer scale. This technique allows us to build artificial structure atom-by-atom, thus some desired interesting quantum structures which are difficult to grow or fabricate by conventional methods could be realized, and unique quantum states, spin order, band structure could be created by the fine tuning of the structural parameters like lattice constant, symmetry, periodicity, etc. Combined with nanosecond scale time domain electric measurement and autonomous control technique, the atom manipulation would be useful in exploring the atomic precision prototype quantum devices, and providing some valuable knowledge for future electronics. In this review, we introduce the atom manipulation technique and related milestone research achievements and latest progress of artificial quantum structures, including electronic lattices with exotic quantum states on Cu(111), quantum dots on III-V semiconductors, magnetic structures with tunable spin order, structures for quantum information storage and processing, prototype Boolean logic devices and single atom devices. The STM lithography and autonomous atom manipulation are discussed as well. With such improvements, this technique would play more important roles in developing the functional quantum devices in future.
      通信作者: 潘毅, yi.pan@xjtu.edu.cn
    • 基金项目: 中国科学院战略性先导科技专项(B类)(批准号: XDB30000000)、国家自然科学基金(批准号: 11704303)和国家重点研发计划(批准号: 2017YFA0206202)资助的课题
      Corresponding author: Pan Yi, yi.pan@xjtu.edu.cn
    • Funds: Project supported by the Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB30000000), the National Natural Science Foundation of China (Grant No.11704303), and the National Basic Research Program of China (Grant No. 2017YFA0206202)
    [1]

    Eigler D M, Schweizer E K 1990 Nature 344 524Google Scholar

    [2]

    Crommie M F, Lutz C P, Eigler D M 1993 Science 262 218Google Scholar

    [3]

    Bartels L, Meyer G, Rieder K H 1997 Phys. Rev. Lett. 79 697Google Scholar

    [4]

    Stroscio J A, Celotta R J 2004 Science 306 242Google Scholar

    [5]

    Ternes M, Lutz C P, Hirjibehedin C F, Giessibl F J, Heinrich A J 2008 Science 319 1066Google Scholar

    [6]

    Heinrich A J, Lutz C P, Gupta J A, Eigler D M 2002 Science 298 1381Google Scholar

    [7]

    Moon C R, Mattos L S, Foster B K, Zeltzer G, Ko W, Manoharan H C 2008 Science 319 782Google Scholar

    [8]

    Moon C R, Mattos L S, Foster B K, Zeltzer G, Manoharan H C 2009 Nat. Nanotechnol. 4 167Google Scholar

    [9]

    Gomes K K, Mar W, Ko W, Guinea F, Manoharan H C 2012 Nature 483 306Google Scholar

    [10]

    Collins L C, Witte T G, Silverman R, Green D B, Gomes K K 2017 Nat. Commun. 8 15961Google Scholar

    [11]

    Slot M R, Gardenier T S, Jacobse P H, van Miert G C P, Kempkes S N, Zevenhuizen S J M, Smith C M, Vanmaekelbergh D, Swart I 2017 Nat. Phys. 13 672Google Scholar

    [12]

    Kempkes S N, Slot M R, Freeney S E, Zevenhuizen S J M, Vanmaekelbergh D, Swart I, Smith C M 2019 Nat. Phys. 15 127Google Scholar

    [13]

    Kempkes S N, Slot M R, van den Broeke J J, Capiod P, Benalcazar W A, Vanmaekelbergh D, Bercioux D, Swart I, Morais Smith C 2019 Nat. Mater. 18 1292Google Scholar

    [14]

    Freeney S E, van den Broeke J J, Harsveld van der Veen A J J, Swart I, Morais Smith C 2020 Phys. Rev. Lett. 124 236404Google Scholar

    [15]

    Simmons M Y, Schofield S R, O’Brien J L, Curson N J, Oberbeck L, Hallam T, Clark R G 2003 Surf. Sci. 532 1209Google Scholar

    [16]

    Scappucci G, Capellini G, Lee W C, Simmons M Y 2009 Nanotechnology 20 495302Google Scholar

    [17]

    Scappucci G, Capellini G, Lee W C T, Simmons M Y 2009 Appl. Phys. Lett. 94 162106Google Scholar

    [18]

    Haider M B, Pitters J L, DiLabio G A, Livadaru L, Mutus J Y, Wolkow R A 2009 Phys. Rev. Lett. 102 046805Google Scholar

    [19]

    Fuechsle M, Mahapatra S, Zwanenburg F A, Friesen M, Eriksson M A, Simmons M Y 2010 Nat. Nanotechnol. 5 502Google Scholar

    [20]

    Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C, Klimeck G, Simmons M Y 2012 Nat. Nanotechnol. 7 242Google Scholar

    [21]

    Weber B, Mahapatra S, Ryu H, Lee S, Fuhrer A, Reusch T C G, Thompson D L, Lee W C T, Klimeck G, Hollenberg L C L, Simmons M Y 2012 Science 335 64Google Scholar

    [22]

    Skeren T, Pascher N, Garnier A, Reynaud P, Rolland E, Thuaire A, Widmer D, Jehl X, Fuhrer A 2018 Nanotechnology 29 435302Google Scholar

    [23]

    Folsch S, Yang J, Nacci C, Kanisawa K 2009 Phys. Rev. Lett. 103 096104Google Scholar

    [24]

    Yang J, Erwin S C, Kanisawa K, Nacci C, Folsch S 2011 Nano Lett. 11 2486Google Scholar

    [25]

    Folsch S, Martinez-Blanco J, Yang J, Kanisawa K, Erwin S C 2014 Nat. Nanotechnol. 9 505Google Scholar

    [26]

    Pan Y, Yang J, Erwin S C, Kanisawa K, Folsch S 2015 Phys. Rev. Lett. 115 076803Google Scholar

    [27]

    Pham V D, Kanisawa K, Folsch S 2019 Phys. Rev. Lett. 123 066801Google Scholar

    [28]

    Gu Q J, Liu N, Zhao W B, Ma Z L, Xue Z Q, Pang S J 1995 Appl. Phys. Lett. 66 1747Google Scholar

    [29]

    Sagisaka K, Fujita D 2006 Appl. Phys. Lett. 88 203118Google Scholar

    [30]

    Takagi Y, Nakatsuji K, Yoshimoto Y, Komori F 2007 Phys. Rev. B 75 115304Google Scholar

    [31]

    Tomatsu K, Nakatsuji K, Iimori T, Takagi Y, Kusuhara H, Ishii A, Komori F 2007 Science 315 1696Google Scholar

    [32]

    Schofield S R, Studer P, Hirjibehedin C F, Curson N J, Aeppli G, Bowler D R 2013 Nat. Commun. 4 1649Google Scholar

    [33]

    Naydenov B, Rungger I, Mantega M, Sanvito S, Boland J J 2015 Nano Lett. 15 2881Google Scholar

    [34]

    Bode M 2003 Rep. Prog. Phys. 66 523Google Scholar

    [35]

    Heinrich A J, Gupta J A, Lutz C P, Eigler D M 2004 Science 306 466Google Scholar

    [36]

    Meier F, Zhou L, Wiebe J, Wiesendanger R 2008 Science 320 82Google Scholar

    [37]

    Baumann S, Paul W, Choi T, Lutz C P, Ardavan A, Heinrich A J 2015 Science 350 417Google Scholar

    [38]

    Celotta R J, Balakirsky S B, Fein A P, Hess F M, Rutter G M, Stroscio J A 2014 Rev. Sci. Instrum. 85 121301Google Scholar

    [39]

    Kalff F E, Rebergen M P, Fahrenfort E, Girovsky J, Toskovic R, Lado J L, Fernandez-Rossier J, Otte A F 2016 Nat. Nanotechnol. 11 926Google Scholar

    [40]

    Moller M, Jarvis S P, Guerinet L, Sharp P, Woolley R, Rahe P, Moriarty P 2017 Nanotechnology 28 075302Google Scholar

    [41]

    Rashidi M, Wolkow R A 2018 ACS Nano 12 5185Google Scholar

    [42]

    Gordon O, D’Hondt P, Knijff L, Freeney S E, Junqueira F, Moriarty P, Swart I 2019 Rev. Sci. Instrum. 90 103704Google Scholar

    [43]

    Wang Y L, Gao H J, Guo H M, Liu H W, Batyrev I G, McMahon W E, Zhang S B 2004 Phys. Rev. B 70 073312Google Scholar

    [44]

    Lyding J W, Shen T C, Hubacek J S, Tucker J R, Abeln G C 1994 Appl. Phys. Lett. 64 2010Google Scholar

    [45]

    Shen T C, Wang C, Abeln G C, Tucker J R, Lyding J W, Avouris P, Walkup R E 1995 Science 268 1590Google Scholar

    [46]

    Zhao A, Li Q, Chen L, Xiang H, Wang W, Pan S, Wang B, Xiao X, Yang J, Hou J G, Zhu Q 2005 Science 309 1542Google Scholar

    [47]

    Liu L, Yang K, Jiang Y, Song B, Xiao W, Li L, Zhou H, Wang Y, Du S, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Sci. Rep. 3 1210Google Scholar

    [48]

    Liu L W, Yang K, Xiao W D, Jiang Y H, Song B Q, Du S X, Gao H J 2013 Appl. Phys. Lett. 103 023110Google Scholar

    [49]

    Cao R X, Miao B F, Zhong Z F, Sun L, You B, Zhang W, Wu D, Hu A, Bader S D, Ding H F 2013 Phys. Rev. B 87 085415Google Scholar

    [50]

    Cao R X, Liu Z, Miao B F, Sun L, Wu D, You B, Li S C, Zhang W, Hu A, Bader S D, Ding H F 2014 Phys. Rev. B 90 045433Google Scholar

    [51]

    Li Q L, Zheng C, Wang R, Miao B F, Cao R X, Sun L, Wu D, Wu Y Z, Li S C, Wang B G, Ding H F 2018 Phys. Rev. B 97 035417Google Scholar

    [52]

    Li Q, Li X, Miao B, Sun L, Chen G, Han P, Ding H 2020 Nat. Commun. 11 1400Google Scholar

    [53]

    Li Q, Cao R, Ding H 2020 Appl. Phys. Lett. 117 060501Google Scholar

    [54]

    Ko W, Ma C, Nguyen G D, Kolmer M, Li A P 2019 Adv. Funct. Mater. 29 1903770Google Scholar

    [55]

    Hla S W 2005 J. Vac. Sci. Technol. B 23 1351Google Scholar

    [56]

    Stroscio J A, Eigler D M 1991 Science 254 1319Google Scholar

    [57]

    Zeppenfeld P, Lutz C P, Eigler D M 1992 Ultramicroscopy 42 128Google Scholar

    [58]

    Meyer G, Repp J, Zöphel S, Braun K-F, Hla S W, Fölsch S, Bartels L, Moresco F, Rieder K H 2000 Single Mol. 1 79Google Scholar

    [59]

    Bartels L, Meyer G, Rieder K H 1998 Chem. Phys. Lett. 285 284Google Scholar

    [60]

    Pan Y, Kanisawa K, Fölsch S 2017 J. Vac. Sci. Technol. B 35 04FGoogle Scholar

    [61]

    Neu B, Meyer G, Rieder K H 1995 Mod. Phys. Lett. B 9 963Google Scholar

    [62]

    Meyer G 1996 Rev. Sci. Instrum. 67 2960Google Scholar

    [63]

    Folsch S, Hyldgaard P, Koch R, Ploog K H 2004 Phys. Rev. Lett. 92 056803Google Scholar

    [64]

    Manoharan H C, Lutz C P, Eigler D M 2000 Nature 403 512Google Scholar

    [65]

    Khajetoorians A A, Schlenk T, Schweflinghaus B, dos Santos Dias M, Steinbrecher M, Bouhassoune M, Lounis S, Wiebe J, Wiesendanger R 2013 Phys. Rev. Lett. 111 157204Google Scholar

    [66]

    Whitman L J, Stroscio J A, Dragoset R A, Celotta R J 1991 Phys. Rev. Lett. 66 1338Google Scholar

    [67]

    Xie Y Q, Yang T X, Ye X, Huang L 2011 Appl. Surf. Sci. 258 1139Google Scholar

    [68]

    Braun K F, Rieder K H 2002 Phys. Rev. Lett. 88 096801Google Scholar

    [69]

    Moro-Lagares M, Korytar R, Piantek M, Robles R, Lorente N, Pascual J I, Ibarra M R, Serrate D 2019 Nat. Commun. 10 2211Google Scholar

    [70]

    Kliewer J, Berndt R, Minar J, Ebert H 2006 Appl. Phys. A-Mater. Sci. Process. 82 63Google Scholar

    [71]

    Li J T, Schneider W D, Berndt R 1998 Appl. Phys. A-Mater. Sci. Process. 66 S675Google Scholar

    [72]

    Madhavan V, Jamneala T, Nagaoka K, Chen W, Li J L, Louie S G, Crommie M F 2002 Phys. Rev. B 66 212411Google Scholar

    [73]

    Ming F, Wang K, Pan S, Liu J, Zhang X, Yang J, Xiao X 2011 ACS Nano 5 7608Google Scholar

    [74]

    Song X, Wang Z P, Liu X Q, Dong M D, Wang L 2016 Appl. Phys. Lett. 109 103105Google Scholar

    [75]

    Nilius N, Wallis T M, Persson M, Ho W 2003 Phys. Rev. Lett. 90 196103Google Scholar

    [76]

    Lee H J, Ho W, Persson M 2004 Phys. Rev. Lett. 92 186802Google Scholar

    [77]

    Bryant B, Toskovic R, Ferron A, Lado J L, Spinelli A, Fernandez-Rossier J, Otte A F 2015 Nano Lett. 15 6542Google Scholar

    [78]

    Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021Google Scholar

    [79]

    Sartale S D, Lin K-L, Chiang C-I, Luo M-F, Kuo C-C 2006 Appl. Phys. Lett. 89 063118Google Scholar

    [80]

    Yang K, Bae Y, Paul W, Natterer F D, Willke P, Lado J L, Ferron A, Choi T, Fernandez-Rossier J, Heinrich A J, Lutz C P 2017 Phys. Rev. Lett. 119 227206Google Scholar

    [81]

    Choi D J, Fernandez C G, Herrera E, Rubio-Verdu C, Ugeda M M, Guillamon I, Suderow H, Pascual J I, Lorente N 2018 Phys. Rev. Lett. 120 167001Google Scholar

    [82]

    Becker R S, Golovchenko J A, Swartzentruber B S 1987 Nature 325 419Google Scholar

    [83]

    Lyo I W, Avouris P 1991 Science 253 173Google Scholar

    [84]

    Salling C T, Lagally M G 1994 Science 265 502Google Scholar

    [85]

    Uchida H, Huang D, Grey F, Aono M 1993 Phys. Rev. Lett. 70 2040Google Scholar

    [86]

    Clery D 1991 New Sci. 129 31

    [87]

    Becker R S, Higashi G S, Chabal Y J, Becker A J 1990 Phys. Rev. Lett. 65 1917Google Scholar

    [88]

    Kuramochi H, Uchida H, Aono M 1994 Phys. Rev. Lett. 72 932Google Scholar

    [89]

    Huang D H, Yamamoto Y 1997 Appl. Phys. A 64 419Google Scholar

    [90]

    Achal R, Rashidi M, Croshaw J, Churchill D, Taucer M, Huff T, Cloutier M, Pitters J, Wolkow R A 2018 Nat. Commun. 9 2778Google Scholar

    [91]

    Kolmer M, Godlewski S, Kawai H, Such B, Krok F, Saeys M, Joachim C, Szymonski M 2012 Phys. Rev. B 86 125307Google Scholar

    [92]

    Eigler D M, Lutz C P, Rudge W E 1991 Nature 352 600Google Scholar

    [93]

    Bartels L, Meyer G, Rieder K H 1997 Appl. Phys. Lett. 71 213Google Scholar

    [94]

    Spinelli A, Bryant B, Delgado F, Fernandez-Rossier J, Otte A F 2014 Nat. Mater. 13 782Google Scholar

    [95]

    Ternes M, Lutz C P, Heinrich A J, Schneider W D 2020 Phys. Rev. Lett. 124 167202Google Scholar

    [96]

    Wang S, Tan L Z, Wang W, Louie S G, Lin N 2014 Phys. Rev. Lett. 113 196803Google Scholar

    [97]

    Shockley W 1939 Phys. Rev. 56 317Google Scholar

    [98]

    Crommie M F, Lutz C P, Eigler D M 1993 Nature 363 524Google Scholar

    [99]

    Hasegawa Y, Avouris P 1993 Phys. Rev. Lett. 71 1071Google Scholar

    [100]

    Tamai A, Meevasana W, King P D C, Nicholson C W, de la Torre A, Rozbicki E, Baumberger F 2013 Phys. Rev. B 87 075113Google Scholar

    [101]

    Qiu W X, Li S, Gao J H, Zhou Y, Zhang F C 2016 Phys. Rev. B 94 241409Google Scholar

    [102]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [103]

    Drost R, Ojanen T, Harju A, Liljeroth P 2017 Nat. Phys. 13 668Google Scholar

    [104]

    Yang J, Nacci C, Martinez-Blanco J, Kanisawa K, Folsch S 2012 J. Phys. Condens. Matter 24 354008Google Scholar

    [105]

    Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062Google Scholar

    [106]

    Bryant B, Spinelli A, Wagenaar J J, Gerrits M, Otte A F 2013 Phys. Rev. Lett. 111 127203Google Scholar

    [107]

    Gambardella P, Blanc M, Bürgi L, Kuhnke K, Kern K 2000 Surf. Sci. 449 93Google Scholar

    [108]

    Gambardella P, Dallmeyer A, Maiti K, Malagoli M C, Eberhardt W, Kern K, Carbone C 2002 Nature 416 301Google Scholar

    [109]

    Choi D-J, Lorente N, Wiebe J, von Bergmann K, Otte A F, Heinrich A J 2019 Rev. Mod. Phys. 91 041001Google Scholar

    [110]

    Khajetoorians A A, Wiebe J, Chilian B, Lounis S, Blügel S, Wiesendanger R 2012 Nat. Phys. 8 497Google Scholar

    [111]

    Khajetoorians A A, Steinbrecher M, Ternes M, Bouhassoune M, dos Santos Dias M, Lounis S, Wiebe J, Wiesendanger R 2016 Nat. Commun. 7 10620Google Scholar

    [112]

    Steinbrecher M, Rausch R, That K T, Hermenau J, Khajetoorians A A, Potthoff M, Wiesendanger R, Wiebe J 2018 Nat. Commun. 9 2853Google Scholar

    [113]

    Loth S, von Bergmann K, Ternes M, Otte A F, Lutz C P, Heinrich A J 2010 Nat. Phys. 6 340Google Scholar

    [114]

    Loth S, Etzkorn M, Lutz C P, Eigler D M, Heinrich A J 2010 Science 329 1628Google Scholar

    [115]

    Yan S, Malavolti L, Burgess J A J, Droghetti A, Rubio A, Loth S 2017 Sci. Adv. 3 e1603137Google Scholar

    [116]

    Yang K, Paul W, Phark S-H, Willke P, Bae Y, Choi T, Esat T, Ardavan A, Heinrich A J, Lutz C P 2019 Science 366 509Google Scholar

    [117]

    Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W 2014 Science 344 1135Google Scholar

    [118]

    Choi T, Lutz C P, Heinrich A J 2017 Curr. Appl. Phys. 17 1513Google Scholar

    [119]

    Choi T, Paul W, Rolf-Pissarczyk S, Macdonald A J, Natterer F D, Yang K, Willke P, Lutz C P, Heinrich A J 2017 Nat. Nanotechnol. 12 420Google Scholar

    [120]

    Feng M, Guo X, Lin X, He X, Ji W, Du S, Zhang D, Zhu D, Gao H 2005 J. Am. Chem. Soc. 127 15338Google Scholar

    [121]

    Kolmer M, Zuzak R, Dridi G, Godlewski S, Joachim C, Szymonski M 2015 Nanoscale 7 12325Google Scholar

    [122]

    Huff T, Labidi H, Rashidi M, Livadaru L, Dienel T, Achal R, Vine W, Pitters J, Wolkow R A 2018 Nat. Electron. 1 636Google Scholar

    [123]

    Wyrick J, Wang X, Namboodiri P, Schmucker S W, Kashid R V, Silver R M 2018 Nano Lett. 18 7502Google Scholar

    [124]

    Livadaru L, Xue P, Shaterzadeh-Yazdi Z, DiLabio G A, Mutus J, Pitters J L, Sanders B C, Wolkow R A 2010 New J. Phys. 12 083018Google Scholar

    [125]

    Pitters J L, Livadaru L, Haider M B, Wolkow R A 2011 J. Chem. Phys. 134 064712Google Scholar

    [126]

    Pavliček N, Majzik Z, Meyer G, Gross L 2017 Appl. Phys. Lett. 111 053104Google Scholar

    [127]

    Soukiassian L, Mayne A J, Carbone M, Dujardin G 2003 Phys. Rev. B 68 035303Google Scholar

    [128]

    Weber B, Tan Y H, Mahapatra S, Watson T F, Ryu H, Rahman R, Hollenberg L C, Klimeck G, Simmons M Y 2014 Nat. Nanotechnol. 9 430Google Scholar

    [129]

    Broome M A, Gorman S K, House M G, Hile S J, Keizer J G, Keith D, Hill C D, Watson T F, Baker W J, Hollenberg L C L, Simmons M Y 2018 Nat. Commun. 9 980Google Scholar

  • 图 1  (a) Ni(110)表面散乱Xe原子经STM针尖操纵改变吸附位置, 形成有序的“IBM”字样结构[1]; (b) Si(111) 7 × 7表面经STM针尖刻蚀形成沟槽结构[28]和“中国”字样结构; (c) STM探针(W丝直径约2 × 10–4 m)与InAs(111)A表面In增原子[26] (间距约9 × 10–10 m)的尺度比例近似于珠穆朗玛峰(约9 × 103 m)和乒乓球(4 × 10–2 m)的尺度比例

    Fig. 1.  (a) The randomly adsorbed Xe atoms on Ni (110) formed regular artifical structure shaped like the letters “I B M” by using STM atom manipulatin technique[1]; (b) Si (111) 7 × 7 surface was etched into nano-scale groove[28] with atomically sharp edges and regular structures shaped like the Chinese characters “中国” by atom manipulation technique; (c) the scale difference between the W wires used as STM tip material (diameter is approximately equal to 2 × 10–4 m) and the distance of neighboring in atoms on InAs (111) A[26] (distance ~9 × 10–10 m) is similar to that between the Mount Qomolangma (height is approximately equal to 9 × 103 m) and a pingpang ball (diameter is approximately equal to 4 × 10–2 m)

    图 2  (a) 横向操纵过程示意图; (b) 横向操纵过程中针尖轨迹及针尖与表面原子之间相互作用示意图[3]; (c) 多种体系中横向原子操纵所需的隧穿电阻参数; (d) 拉动、滑动、推动3种横向操纵模式过程的针尖高度变化[58]

    Fig. 2.  (a) Schematics illustrating lateral atom manipulation; (b) schematics of the tip path and the tip-atom interaction during lateral atom manipulation[3]; (c) the tunneling resistances required for the lateral manipulation in the displayed systems; (d) the typical tunneling resistances parameter for pulling, sliding, and pushing modes of lateral atom manipulation[58].

    图 3  (a) 纵向操纵过程示意图; (b)−(e) InAs(111)A 表面In增原子纵向操纵具体步骤[60]; (b)在+0.8 V偏压下, 控制针尖接近衬底标记处; (c) 针尖尖端In原子落于目标位置之后, 立即扫图得到的形貌图, 原标记处3个突起的结构显示了放置的原子, 由于释放尖端原子后针尖变钝, 显示3个突起的形状; (d)在–1.0 V偏压下, 控制钝针尖接近衬底标记处原子; (e)针尖提起原标记处的原子后立即扫图得到形貌图, 原标记处原子消失, 钝针尖提起衬底原子后恢复尖锐状态; (f)纵向原子操纵各个步骤中针尖高度变化的隧穿电流I(z)曲线[60]

    Fig. 3.  (a) Schematics illustrating vertical atom manipulation; (b)−(e) steps of picking up and dropping a single In atom on InAs(111)A by vertical atom manipulation[60]; (b) tip approaching the marker with bias of +0.8 V; (c) dropping an In atom from the tip apex. Resolution changing indicates the tip become dull because of the dropping event; (d) picking up the In atom as marked; (e) after the picking-up event, the tip return sharp; (f) the I(z) curve recorded during the vertical manipulation of a single In atom[60].

    图 4  构筑不同对称性量子结构实现对金属表面态人工电子晶格能带色散的调控[9,11,98,100] (a)−(d) Cu(111)表面态二维电子气的抛物线型色散能带; (b) Cu(111)表面STM图像, 显示了表面态被杂质或台阶散射后相互干涉形成的驻波; (c) 不同能量表面态驻波波长随能量的变化, 其中插图为根据波长与能量关系拟合抛物线型色散关系; (d) ARPES直接测量的Cu(111)表面态能带; (e)−(i) 在Cu(111)操纵CO分子构筑蜂巢型电子晶格, 实现线性色散能带; (f)类石墨烯电子晶格的结构设计示意图; (g) 类石墨烯电子晶格构筑过程, 蓝色箭头表示了CO的移动路径; (h) 类石墨烯电子晶格的STM图像; (i) dI/dV谱显示了Dirac锥型能带对应的态密度;虚线为紧束缚模型计算结果; (j)−(n) 在Cu(111)操纵CO分子构筑Lieb型电子晶格, 实现无色散平带; (k) Lieb晶格示意图; (l) Lieb型电子晶格设计图, 通过CO分子密度实现对晶格最(次)近邻跳跃常数t(t')的调控; (m) Lieb型电子晶格STM图; (n) dI/dV谱显示平带态密度峰, 散点线为实验结果, 连续线为紧束缚模型计算结果

    Fig. 4.  Tuning the dispersion relation of 2DEG by building artificial quantum structure of desired lattices [9,11,98,100]: (a)−(d) Parabolic dispersion relationship of the natural 2D electron gas on Cu(111); (b) STM image of Cu(111) showing the standing wave of surface states at scattering at defects and step edges; (c) wave length of the standing wave varies with energy, fitting the k vector with energy show the parabolic dispersion; (d) band structure taken by ARPES shows the parabolic dispersion; (e)−(i) linear dispersion realized in the artificial electronic honeycomb lattice constructed by manipulation of CO molecules on Cu (111); (f) schematic of the designer honeycomb lattice; (g) building the designer honeycomb lattice by moving CO molecules; (h) STM image of the artificial molecular graphene lattice; (i) dI/dV spectra showing the density of states around EF, similar to that from Dirac cone; (j)−(n) dispersion less flat band realized in the artificial electronic Lieb lattice constructed by manipulation of CO molecules on Cu(111); (k) schematic of Lieb lattice; (l) design of artificial electronic Lieb lattice; (m) STM topography of electronic Lieb lattice; (n) dI/dV spectra showing the flat band DOS curve.

    图 5  利用原子操纵在Cu(111)-CO体系中实现的准周期结构、分形结构、具有拓扑量子态人工电子晶格[10,12-14] (a)−(c) 彭罗斯贴砖结构的准周期人工晶格; (a)彭罗斯贴砖准周期结构示意图及CO分子构成的准周期晶格设计图, 右:构成该结构的8种单元; (b) 人工晶格准周期结构STM形貌图, 比例尺为5 nm; (c) 人工晶格准周期结构态密度map图; (d)−(f) 分形结构人工晶格; (d) CO分子构成的三阶(generation)谢尔宾斯基三角的分形结构晶格设计图; (e)对应的人工晶格STM形貌图, 比例尺为2 nm; (f) 对应的态密度map图, 比例尺为5 nm; (g)−(i) Breathing Kagome人工晶格; (g) CO分子构成的 Breathing Kagome晶格设计图; (h)对应的人工晶格STM形貌图, 比例尺为5 nm; (i) 对应的态密度map图, 其中三个角的位置显示拓扑角态, 比例尺为5 nm; (j)−(l) Kekulé人工晶格; (j) CO分子构成的 Kekulé晶格设计图; (k)对应的人工晶格STM形貌图, 比例尺为5 nm; (l) 对应的态密度map图, 其中边缘突起处显示拓扑边界态, 比例尺为5 nm

    Fig. 5.  Realizing the quasi-periodic, fractional and the topological states in the artificial lattice by manipulation of CO molecules on Cu(111)[10,12-14]: (a)−(c) the quasi-periodic artificial lattice with Penrose tiling structure; (a) structure schematic overlaid on the STM topography. Right: 8 kinds of tiling units; (b) STM topography of this quasi-periodic artificial lattice; (c) corresponding density of states (DOS) map; (d)−(f) fractals lattice of the third generation Sierpiński triangle; (d) schematic of structure design; (e) corresponding STM topography; (f) corresponding DOS map; (g)−(i) breathing Kagome lattice with topological corner states; (g) schematic of structure design; (h) corresponding STM topography; (i) corresponding DOS map; (j)−(l) Kekulé lattice with topological edges states; (j) schematic of structure design; (k) corresponding STM topography; (l) corresponding DOS map

    图 6  半导体表面构筑的人工量子点、量子点分子[23,25-27] (a) InAs(111)A面2 × 2重构结构示意图; (b) 表面吸附的单个In原子; (c) 利用纵向原子操纵构筑In原子链形成的量子点; (d) 上: 两个In6量子点组成的量子点分子; 中: 沿上图白色虚线测量的随能量变化的态密度 map图, 显示了量子点分子的)反键态(σ*)和成键态(σ); 下: 成键态和反键态对应能量上态密度 map图; (e) 三个量子点组成的三重对称量子点分子及其反键态(σ*)和成键态(σ)点的态密度 map图; (f) 利用电压调控产生可移动的结, 实现结构可调的量子点分子; (g) 对应四种量子点分子的态密度 map图D (x, V); (h) 36个In原子组成闭环量子点分子; (i) 类s轨道反键状态的态密度 map及示意图; (j) 类p轨道键合状态的态密度 map及示意图

    Fig. 6.  Quantum dots and quantum dot molecules constructed by vertical atom manipulation on III-V semiconductor surfaces[23,25-27]: (a) Structure model of InAs(111) with 2 × 2 reconstruction; (b) surface In adatom; (c) quantum dots constructed by manipulating In adatoms; (d) linear QD molecule formed by two neighboring In6 QDs, and the DOS maps; (e) 3-fold symmetric QD molecule, and its DOS maps; (f) reconfigurable QD molecules and (g) their DOS maps; (h) circular QD molecules with (i) s orbital and (j) p orbital like coupling as revealed by the DOS maps.

    图 7  磁性原子构成的人工量子结构[78,94,105] (a)−(c) CuN衬底上人工构筑的不同长度Mn原子链; (a) STM形貌图(10 mV, 0.1 nA); (b)模型示意图; (c) dI/dV谱; (d)−(f) CuN衬底上人工构筑的铁磁耦合Fe6原子链; (d) 模型示意图; (e) SP-STM形貌图(2.5 nm × 4.5 nm, 4.2 mV, 20 pA), 磁场方向沿[100], 大小200 mT; (f)直线所示位置的Z(t)谱; (g)−(h)人工原子链的自旋逻辑门模型器件; (g) 器件模型示意图; (h) 演示“或”门运算4种状态的自旋分辨态密度图

    Fig. 7.  Artificial spin chains constructed by manipulation of magnetic atoms[78,94,105]: (a)−(c) Mn chains on CuN substrate; (a) topographic STM image (10 mV, 0.1 nA); (b) schematics of the structure and (c) dI/dV spectra; (d)−(f) Fe6 chain on CuN; (d) schema-tics of structure and spin order; (e) spin polarized topographic STM image (2.5 nm × 4.5 nm, 4.2 mV, 20 pA, B = 200 mT @[100]) and (f) Z(t) spectra on the indicated atoms; (g)−(h) atomic-spin-based logic gate realized in the Co chains model device on Cu substrate; (g) schematics of the device, and (h) DOS maps revealing the “OR” gate functions.

    图 8  结合射频测量技术在磁性人工量子结构中实现自旋动力学调控[115,116] (a), (b) Cu2N/Cu(100) 衬底上用Fe原子构筑的自旋传感器; (a) 结构示意图; (b)两种Neél态(0和1)的SP-STM形貌图; (c), (d) MgO (001)衬底上调控Ti原子距离及吸附位置, 实现(c)铁磁和(e)反铁磁耦合的单原子相干自旋操纵

    Fig. 8.  Spin dynamic detection and manipulation in atomic spin structure realized by combining atom manipulation and RF (radio frequency) pumping-probe techniques[115,116]: (a), (b) Spin sensor constructed by manipulation of Fe atoms on Cu2N/Cu(100) substrate; (a) schematics of the structure; (b) spin polarized topographic images showing the two Neél states (0 and 1); (c), (d) coherent spin manipulation of single Ti atoms on MgO (001) substrate; (c) ferromagnetic and (d) antiferromagnetic coupling of the Ti atom pair revealed by SP-STM images and RF signal.

    图 9  具有复杂功能的人工量子结构[7,8,52,64] (a)−(c) 在人工构筑的椭圆形量子围栏实现信息传递; (a) 椭圆的几何图形; (b) 由Co原子构成的椭圆量子围栏, 其中一个焦点处放置Co原子; (c) 态密度 map 图显示另一个焦点处的也有围栏反射的近藤效应信号; (d), (e) 通过设计并构筑CO分子组成的人工量子结构(d)实现同一空间不同能量存储信息的量子全息存储(e); (f)−(h) 通过设计并构筑CO分子组成的结构不同但电子结构相同“同构”量子结构(f)和(g), 实现量子信息移植(h); (i)−(j) 利用量子围栏实现无需近藤效应的具有(i)非门和(j)扇出门信息运算功能的结构

    Fig. 9.  Complex artificial quantum structures showing potential functions of quantum information storage and processing[7,8,52,64]: (a)−(c) Information transport realized by reflecting the Kondo signal from one Co atom in the focal point to the other empty focal point; (a) geometric schematic; (b) the elliptic quantum corral structure with a Co atom at one of the focal points; (c) DOS map showing Kondo signal at the other focal point; (d), (e) quantum holographic data storage realized in an designer CO structure on Cu(111) (d) by info-encoded DOS maps (e) at different energies; (f)−(h) quantum information transplantation realized the “isomorphism” quantum structures, e. g. two different artificial structures of CO on Cu(111) (f) and (g) with identical electronic states at certain energies (h); (i)−(j) Kondo free information transport and logic “and” gate (i) and “fan out” gate (j) realized in the artificial quantum corral structures on Ag(111) surface.

    图 10  单原子刻蚀技术及其应用[20,90,122,127] (a) H钝化的Si(001)表面STM形貌图(1.5 V, 0.4 nA, 0.4 nm × 0.6 nm); (b) 通过施加局域电压脉冲单个Si悬挂键, 实现单原子刻蚀; (c) 由Si悬挂键构筑的8 bit存储结构, 从上至下显示了字母A−L的ASCII二进制编码在同一位置的写入; (d)−(f) 由Si悬挂键构筑的“或”门模型器件; (d) 器件结构STM 图像(–1.8 V, 50 pA); (e) 相应位置恒高q+AFM频率变化图像(V = 0 V, Zrel = –350 pm); (f) 原理示意图; (g) 利用STM刻蚀技术制作的单原子p晶体管的三维STM图像; (h)局域电势模拟; (i) 器件输运测量dISD/dVSDVSD -VG的变化

    Fig. 10.  Single atom etching technique and application [20,90,122,127]: (a) Topographic STM image of H saturated Si(100) surface (1.5 V, 0.4 nA, 0.4 nm × 0.6 nm); (b) single Si dangle bond (DB) created by applying voltage pulse; (c) 8 bit rewritable storage of A−L using single atom lithography; (d)−(f) “OR” gate model device based on Si DBs constructed by single atom lithography; (d) corresponding STM topography(–1.8 V, 50 pA); (e) corresponding constant-height Δf images(V = 0 V, Zrel = –350 pm); (f) model schematic (g)single atom transport device based on single P dopant on Si(100) realized by using STM lithography; (h) calculated potential varies with position; (i) dISD/dVSD as a function of VSD and VG.

    图 11  程序控制的自动原子操纵和应用[38,39] (a) 自动原子操纵的流程图; (b) 通过确定Cu(111)衬底上不同的吸附位和吸附原子确定自动操纵基本动作单元; (c) 通过特定算法自动分解可能的路径, 并优化获得针对目标图案的粗略路径(d); (e) 自动操纵实例, 自上到下:从随机分布的71个Co原子, 得到初步图形, 然后逐步提高精度, 直至完成最终图案; (f)−(i) 通过自动操纵Cl钝化Cu (100)表面Cl空位实现高密度信息存储; (f) Cl空位结构示意图; (g) 利用Cl空位位置定义单bit 中0, 1两种状态; (h) 一个字节中字母‘e’编码的示意图; (i)存储了“TU Delft”的64 bit单元结构的STM图像(2.00 nA, 500 mV, 1.5 K)

    Fig. 11.  Autonomous atom manipulation strategy and application[38,39]: (a) Diagram of autonomous manipulation system; (b) assign the basic tasks by analyzing the manipulation target and substrate; (c) designing the working scheme using algorithms; (d) optimi-zed the rough-pass scheme; (e) example of autonomous manipulation of Co atom on Cu(111) surface; (f)−(i) application of autonomous atom manipulation in model high density memory on Cl saturated Cu(100) surface with Cl vacancies; (f) schematic of Cl vacancy; (g) 0, 1 states of a single bit defined by the position of Cl vacancy; (h) diagram of the byte representing the binary ASCII code for ‘e’; (i) STM topography written as “TU Delft” (2.00 nA, 500 mV, 1.5 K).

    表 1  横向操纵体系

    Table 1.  Systems for lateral manipulation.

    衬底/表面操纵对象
    Ni(110)Xe[1]
    Cu(211)CO[61,62], Pb[3], Cu[3]
    Cu(111)Fe[2], Cu[59,63], Co[4,5,64]
    Cu(100)Cl vacancy[39]
    Pt(111)CO[57], Pt[57], Fe[65]
    GaAs(110)Cs[66]
    Ag(111)Ag[52,67,68], Cu[67], Fe[52], Co[69], Mn[70]
    Ag(110)Ag[71]
    Au(111)Ni[72]
    Si(111)Ag[73,74]
    NiAl(100)Au[75], Mn[76], Fe[76], Co[76]
    Cu2N/Cu(100)Co[77], Mn[78]
    Al2O3/NiAl(100)Co nanoclusters[79]
    MgO/Ag(001)Ti[80]
    β-Bi2PdCr[81]
    下载: 导出CSV

    表 2  纵向操纵体系

    Table 2.  Systems for vertical manipulation.

    衬底/表面操纵对象
    Ge(刻蚀)Ge[82]
    Si(刻蚀)Si[28,8385]
    MoS2(刻蚀)S[86]
    Si(111)H[87,88]
    Si(100)H[44,45,89,90]
    Ge(001)H[16,91]
    Ni(110)Xe[92]
    Cu(211)Xe[61]
    Cu(111)CO[9,93]
    Cu(211)CO[58], Xe[58]
    InAs(111)In[23,26]
    Cu2N/Cu(100)Fe[94], Ce[95]
    下载: 导出CSV
  • [1]

    Eigler D M, Schweizer E K 1990 Nature 344 524Google Scholar

    [2]

    Crommie M F, Lutz C P, Eigler D M 1993 Science 262 218Google Scholar

    [3]

    Bartels L, Meyer G, Rieder K H 1997 Phys. Rev. Lett. 79 697Google Scholar

    [4]

    Stroscio J A, Celotta R J 2004 Science 306 242Google Scholar

    [5]

    Ternes M, Lutz C P, Hirjibehedin C F, Giessibl F J, Heinrich A J 2008 Science 319 1066Google Scholar

    [6]

    Heinrich A J, Lutz C P, Gupta J A, Eigler D M 2002 Science 298 1381Google Scholar

    [7]

    Moon C R, Mattos L S, Foster B K, Zeltzer G, Ko W, Manoharan H C 2008 Science 319 782Google Scholar

    [8]

    Moon C R, Mattos L S, Foster B K, Zeltzer G, Manoharan H C 2009 Nat. Nanotechnol. 4 167Google Scholar

    [9]

    Gomes K K, Mar W, Ko W, Guinea F, Manoharan H C 2012 Nature 483 306Google Scholar

    [10]

    Collins L C, Witte T G, Silverman R, Green D B, Gomes K K 2017 Nat. Commun. 8 15961Google Scholar

    [11]

    Slot M R, Gardenier T S, Jacobse P H, van Miert G C P, Kempkes S N, Zevenhuizen S J M, Smith C M, Vanmaekelbergh D, Swart I 2017 Nat. Phys. 13 672Google Scholar

    [12]

    Kempkes S N, Slot M R, Freeney S E, Zevenhuizen S J M, Vanmaekelbergh D, Swart I, Smith C M 2019 Nat. Phys. 15 127Google Scholar

    [13]

    Kempkes S N, Slot M R, van den Broeke J J, Capiod P, Benalcazar W A, Vanmaekelbergh D, Bercioux D, Swart I, Morais Smith C 2019 Nat. Mater. 18 1292Google Scholar

    [14]

    Freeney S E, van den Broeke J J, Harsveld van der Veen A J J, Swart I, Morais Smith C 2020 Phys. Rev. Lett. 124 236404Google Scholar

    [15]

    Simmons M Y, Schofield S R, O’Brien J L, Curson N J, Oberbeck L, Hallam T, Clark R G 2003 Surf. Sci. 532 1209Google Scholar

    [16]

    Scappucci G, Capellini G, Lee W C, Simmons M Y 2009 Nanotechnology 20 495302Google Scholar

    [17]

    Scappucci G, Capellini G, Lee W C T, Simmons M Y 2009 Appl. Phys. Lett. 94 162106Google Scholar

    [18]

    Haider M B, Pitters J L, DiLabio G A, Livadaru L, Mutus J Y, Wolkow R A 2009 Phys. Rev. Lett. 102 046805Google Scholar

    [19]

    Fuechsle M, Mahapatra S, Zwanenburg F A, Friesen M, Eriksson M A, Simmons M Y 2010 Nat. Nanotechnol. 5 502Google Scholar

    [20]

    Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C, Klimeck G, Simmons M Y 2012 Nat. Nanotechnol. 7 242Google Scholar

    [21]

    Weber B, Mahapatra S, Ryu H, Lee S, Fuhrer A, Reusch T C G, Thompson D L, Lee W C T, Klimeck G, Hollenberg L C L, Simmons M Y 2012 Science 335 64Google Scholar

    [22]

    Skeren T, Pascher N, Garnier A, Reynaud P, Rolland E, Thuaire A, Widmer D, Jehl X, Fuhrer A 2018 Nanotechnology 29 435302Google Scholar

    [23]

    Folsch S, Yang J, Nacci C, Kanisawa K 2009 Phys. Rev. Lett. 103 096104Google Scholar

    [24]

    Yang J, Erwin S C, Kanisawa K, Nacci C, Folsch S 2011 Nano Lett. 11 2486Google Scholar

    [25]

    Folsch S, Martinez-Blanco J, Yang J, Kanisawa K, Erwin S C 2014 Nat. Nanotechnol. 9 505Google Scholar

    [26]

    Pan Y, Yang J, Erwin S C, Kanisawa K, Folsch S 2015 Phys. Rev. Lett. 115 076803Google Scholar

    [27]

    Pham V D, Kanisawa K, Folsch S 2019 Phys. Rev. Lett. 123 066801Google Scholar

    [28]

    Gu Q J, Liu N, Zhao W B, Ma Z L, Xue Z Q, Pang S J 1995 Appl. Phys. Lett. 66 1747Google Scholar

    [29]

    Sagisaka K, Fujita D 2006 Appl. Phys. Lett. 88 203118Google Scholar

    [30]

    Takagi Y, Nakatsuji K, Yoshimoto Y, Komori F 2007 Phys. Rev. B 75 115304Google Scholar

    [31]

    Tomatsu K, Nakatsuji K, Iimori T, Takagi Y, Kusuhara H, Ishii A, Komori F 2007 Science 315 1696Google Scholar

    [32]

    Schofield S R, Studer P, Hirjibehedin C F, Curson N J, Aeppli G, Bowler D R 2013 Nat. Commun. 4 1649Google Scholar

    [33]

    Naydenov B, Rungger I, Mantega M, Sanvito S, Boland J J 2015 Nano Lett. 15 2881Google Scholar

    [34]

    Bode M 2003 Rep. Prog. Phys. 66 523Google Scholar

    [35]

    Heinrich A J, Gupta J A, Lutz C P, Eigler D M 2004 Science 306 466Google Scholar

    [36]

    Meier F, Zhou L, Wiebe J, Wiesendanger R 2008 Science 320 82Google Scholar

    [37]

    Baumann S, Paul W, Choi T, Lutz C P, Ardavan A, Heinrich A J 2015 Science 350 417Google Scholar

    [38]

    Celotta R J, Balakirsky S B, Fein A P, Hess F M, Rutter G M, Stroscio J A 2014 Rev. Sci. Instrum. 85 121301Google Scholar

    [39]

    Kalff F E, Rebergen M P, Fahrenfort E, Girovsky J, Toskovic R, Lado J L, Fernandez-Rossier J, Otte A F 2016 Nat. Nanotechnol. 11 926Google Scholar

    [40]

    Moller M, Jarvis S P, Guerinet L, Sharp P, Woolley R, Rahe P, Moriarty P 2017 Nanotechnology 28 075302Google Scholar

    [41]

    Rashidi M, Wolkow R A 2018 ACS Nano 12 5185Google Scholar

    [42]

    Gordon O, D’Hondt P, Knijff L, Freeney S E, Junqueira F, Moriarty P, Swart I 2019 Rev. Sci. Instrum. 90 103704Google Scholar

    [43]

    Wang Y L, Gao H J, Guo H M, Liu H W, Batyrev I G, McMahon W E, Zhang S B 2004 Phys. Rev. B 70 073312Google Scholar

    [44]

    Lyding J W, Shen T C, Hubacek J S, Tucker J R, Abeln G C 1994 Appl. Phys. Lett. 64 2010Google Scholar

    [45]

    Shen T C, Wang C, Abeln G C, Tucker J R, Lyding J W, Avouris P, Walkup R E 1995 Science 268 1590Google Scholar

    [46]

    Zhao A, Li Q, Chen L, Xiang H, Wang W, Pan S, Wang B, Xiao X, Yang J, Hou J G, Zhu Q 2005 Science 309 1542Google Scholar

    [47]

    Liu L, Yang K, Jiang Y, Song B, Xiao W, Li L, Zhou H, Wang Y, Du S, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Sci. Rep. 3 1210Google Scholar

    [48]

    Liu L W, Yang K, Xiao W D, Jiang Y H, Song B Q, Du S X, Gao H J 2013 Appl. Phys. Lett. 103 023110Google Scholar

    [49]

    Cao R X, Miao B F, Zhong Z F, Sun L, You B, Zhang W, Wu D, Hu A, Bader S D, Ding H F 2013 Phys. Rev. B 87 085415Google Scholar

    [50]

    Cao R X, Liu Z, Miao B F, Sun L, Wu D, You B, Li S C, Zhang W, Hu A, Bader S D, Ding H F 2014 Phys. Rev. B 90 045433Google Scholar

    [51]

    Li Q L, Zheng C, Wang R, Miao B F, Cao R X, Sun L, Wu D, Wu Y Z, Li S C, Wang B G, Ding H F 2018 Phys. Rev. B 97 035417Google Scholar

    [52]

    Li Q, Li X, Miao B, Sun L, Chen G, Han P, Ding H 2020 Nat. Commun. 11 1400Google Scholar

    [53]

    Li Q, Cao R, Ding H 2020 Appl. Phys. Lett. 117 060501Google Scholar

    [54]

    Ko W, Ma C, Nguyen G D, Kolmer M, Li A P 2019 Adv. Funct. Mater. 29 1903770Google Scholar

    [55]

    Hla S W 2005 J. Vac. Sci. Technol. B 23 1351Google Scholar

    [56]

    Stroscio J A, Eigler D M 1991 Science 254 1319Google Scholar

    [57]

    Zeppenfeld P, Lutz C P, Eigler D M 1992 Ultramicroscopy 42 128Google Scholar

    [58]

    Meyer G, Repp J, Zöphel S, Braun K-F, Hla S W, Fölsch S, Bartels L, Moresco F, Rieder K H 2000 Single Mol. 1 79Google Scholar

    [59]

    Bartels L, Meyer G, Rieder K H 1998 Chem. Phys. Lett. 285 284Google Scholar

    [60]

    Pan Y, Kanisawa K, Fölsch S 2017 J. Vac. Sci. Technol. B 35 04FGoogle Scholar

    [61]

    Neu B, Meyer G, Rieder K H 1995 Mod. Phys. Lett. B 9 963Google Scholar

    [62]

    Meyer G 1996 Rev. Sci. Instrum. 67 2960Google Scholar

    [63]

    Folsch S, Hyldgaard P, Koch R, Ploog K H 2004 Phys. Rev. Lett. 92 056803Google Scholar

    [64]

    Manoharan H C, Lutz C P, Eigler D M 2000 Nature 403 512Google Scholar

    [65]

    Khajetoorians A A, Schlenk T, Schweflinghaus B, dos Santos Dias M, Steinbrecher M, Bouhassoune M, Lounis S, Wiebe J, Wiesendanger R 2013 Phys. Rev. Lett. 111 157204Google Scholar

    [66]

    Whitman L J, Stroscio J A, Dragoset R A, Celotta R J 1991 Phys. Rev. Lett. 66 1338Google Scholar

    [67]

    Xie Y Q, Yang T X, Ye X, Huang L 2011 Appl. Surf. Sci. 258 1139Google Scholar

    [68]

    Braun K F, Rieder K H 2002 Phys. Rev. Lett. 88 096801Google Scholar

    [69]

    Moro-Lagares M, Korytar R, Piantek M, Robles R, Lorente N, Pascual J I, Ibarra M R, Serrate D 2019 Nat. Commun. 10 2211Google Scholar

    [70]

    Kliewer J, Berndt R, Minar J, Ebert H 2006 Appl. Phys. A-Mater. Sci. Process. 82 63Google Scholar

    [71]

    Li J T, Schneider W D, Berndt R 1998 Appl. Phys. A-Mater. Sci. Process. 66 S675Google Scholar

    [72]

    Madhavan V, Jamneala T, Nagaoka K, Chen W, Li J L, Louie S G, Crommie M F 2002 Phys. Rev. B 66 212411Google Scholar

    [73]

    Ming F, Wang K, Pan S, Liu J, Zhang X, Yang J, Xiao X 2011 ACS Nano 5 7608Google Scholar

    [74]

    Song X, Wang Z P, Liu X Q, Dong M D, Wang L 2016 Appl. Phys. Lett. 109 103105Google Scholar

    [75]

    Nilius N, Wallis T M, Persson M, Ho W 2003 Phys. Rev. Lett. 90 196103Google Scholar

    [76]

    Lee H J, Ho W, Persson M 2004 Phys. Rev. Lett. 92 186802Google Scholar

    [77]

    Bryant B, Toskovic R, Ferron A, Lado J L, Spinelli A, Fernandez-Rossier J, Otte A F 2015 Nano Lett. 15 6542Google Scholar

    [78]

    Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021Google Scholar

    [79]

    Sartale S D, Lin K-L, Chiang C-I, Luo M-F, Kuo C-C 2006 Appl. Phys. Lett. 89 063118Google Scholar

    [80]

    Yang K, Bae Y, Paul W, Natterer F D, Willke P, Lado J L, Ferron A, Choi T, Fernandez-Rossier J, Heinrich A J, Lutz C P 2017 Phys. Rev. Lett. 119 227206Google Scholar

    [81]

    Choi D J, Fernandez C G, Herrera E, Rubio-Verdu C, Ugeda M M, Guillamon I, Suderow H, Pascual J I, Lorente N 2018 Phys. Rev. Lett. 120 167001Google Scholar

    [82]

    Becker R S, Golovchenko J A, Swartzentruber B S 1987 Nature 325 419Google Scholar

    [83]

    Lyo I W, Avouris P 1991 Science 253 173Google Scholar

    [84]

    Salling C T, Lagally M G 1994 Science 265 502Google Scholar

    [85]

    Uchida H, Huang D, Grey F, Aono M 1993 Phys. Rev. Lett. 70 2040Google Scholar

    [86]

    Clery D 1991 New Sci. 129 31

    [87]

    Becker R S, Higashi G S, Chabal Y J, Becker A J 1990 Phys. Rev. Lett. 65 1917Google Scholar

    [88]

    Kuramochi H, Uchida H, Aono M 1994 Phys. Rev. Lett. 72 932Google Scholar

    [89]

    Huang D H, Yamamoto Y 1997 Appl. Phys. A 64 419Google Scholar

    [90]

    Achal R, Rashidi M, Croshaw J, Churchill D, Taucer M, Huff T, Cloutier M, Pitters J, Wolkow R A 2018 Nat. Commun. 9 2778Google Scholar

    [91]

    Kolmer M, Godlewski S, Kawai H, Such B, Krok F, Saeys M, Joachim C, Szymonski M 2012 Phys. Rev. B 86 125307Google Scholar

    [92]

    Eigler D M, Lutz C P, Rudge W E 1991 Nature 352 600Google Scholar

    [93]

    Bartels L, Meyer G, Rieder K H 1997 Appl. Phys. Lett. 71 213Google Scholar

    [94]

    Spinelli A, Bryant B, Delgado F, Fernandez-Rossier J, Otte A F 2014 Nat. Mater. 13 782Google Scholar

    [95]

    Ternes M, Lutz C P, Heinrich A J, Schneider W D 2020 Phys. Rev. Lett. 124 167202Google Scholar

    [96]

    Wang S, Tan L Z, Wang W, Louie S G, Lin N 2014 Phys. Rev. Lett. 113 196803Google Scholar

    [97]

    Shockley W 1939 Phys. Rev. 56 317Google Scholar

    [98]

    Crommie M F, Lutz C P, Eigler D M 1993 Nature 363 524Google Scholar

    [99]

    Hasegawa Y, Avouris P 1993 Phys. Rev. Lett. 71 1071Google Scholar

    [100]

    Tamai A, Meevasana W, King P D C, Nicholson C W, de la Torre A, Rozbicki E, Baumberger F 2013 Phys. Rev. B 87 075113Google Scholar

    [101]

    Qiu W X, Li S, Gao J H, Zhou Y, Zhang F C 2016 Phys. Rev. B 94 241409Google Scholar

    [102]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [103]

    Drost R, Ojanen T, Harju A, Liljeroth P 2017 Nat. Phys. 13 668Google Scholar

    [104]

    Yang J, Nacci C, Martinez-Blanco J, Kanisawa K, Folsch S 2012 J. Phys. Condens. Matter 24 354008Google Scholar

    [105]

    Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062Google Scholar

    [106]

    Bryant B, Spinelli A, Wagenaar J J, Gerrits M, Otte A F 2013 Phys. Rev. Lett. 111 127203Google Scholar

    [107]

    Gambardella P, Blanc M, Bürgi L, Kuhnke K, Kern K 2000 Surf. Sci. 449 93Google Scholar

    [108]

    Gambardella P, Dallmeyer A, Maiti K, Malagoli M C, Eberhardt W, Kern K, Carbone C 2002 Nature 416 301Google Scholar

    [109]

    Choi D-J, Lorente N, Wiebe J, von Bergmann K, Otte A F, Heinrich A J 2019 Rev. Mod. Phys. 91 041001Google Scholar

    [110]

    Khajetoorians A A, Wiebe J, Chilian B, Lounis S, Blügel S, Wiesendanger R 2012 Nat. Phys. 8 497Google Scholar

    [111]

    Khajetoorians A A, Steinbrecher M, Ternes M, Bouhassoune M, dos Santos Dias M, Lounis S, Wiebe J, Wiesendanger R 2016 Nat. Commun. 7 10620Google Scholar

    [112]

    Steinbrecher M, Rausch R, That K T, Hermenau J, Khajetoorians A A, Potthoff M, Wiesendanger R, Wiebe J 2018 Nat. Commun. 9 2853Google Scholar

    [113]

    Loth S, von Bergmann K, Ternes M, Otte A F, Lutz C P, Heinrich A J 2010 Nat. Phys. 6 340Google Scholar

    [114]

    Loth S, Etzkorn M, Lutz C P, Eigler D M, Heinrich A J 2010 Science 329 1628Google Scholar

    [115]

    Yan S, Malavolti L, Burgess J A J, Droghetti A, Rubio A, Loth S 2017 Sci. Adv. 3 e1603137Google Scholar

    [116]

    Yang K, Paul W, Phark S-H, Willke P, Bae Y, Choi T, Esat T, Ardavan A, Heinrich A J, Lutz C P 2019 Science 366 509Google Scholar

    [117]

    Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W 2014 Science 344 1135Google Scholar

    [118]

    Choi T, Lutz C P, Heinrich A J 2017 Curr. Appl. Phys. 17 1513Google Scholar

    [119]

    Choi T, Paul W, Rolf-Pissarczyk S, Macdonald A J, Natterer F D, Yang K, Willke P, Lutz C P, Heinrich A J 2017 Nat. Nanotechnol. 12 420Google Scholar

    [120]

    Feng M, Guo X, Lin X, He X, Ji W, Du S, Zhang D, Zhu D, Gao H 2005 J. Am. Chem. Soc. 127 15338Google Scholar

    [121]

    Kolmer M, Zuzak R, Dridi G, Godlewski S, Joachim C, Szymonski M 2015 Nanoscale 7 12325Google Scholar

    [122]

    Huff T, Labidi H, Rashidi M, Livadaru L, Dienel T, Achal R, Vine W, Pitters J, Wolkow R A 2018 Nat. Electron. 1 636Google Scholar

    [123]

    Wyrick J, Wang X, Namboodiri P, Schmucker S W, Kashid R V, Silver R M 2018 Nano Lett. 18 7502Google Scholar

    [124]

    Livadaru L, Xue P, Shaterzadeh-Yazdi Z, DiLabio G A, Mutus J, Pitters J L, Sanders B C, Wolkow R A 2010 New J. Phys. 12 083018Google Scholar

    [125]

    Pitters J L, Livadaru L, Haider M B, Wolkow R A 2011 J. Chem. Phys. 134 064712Google Scholar

    [126]

    Pavliček N, Majzik Z, Meyer G, Gross L 2017 Appl. Phys. Lett. 111 053104Google Scholar

    [127]

    Soukiassian L, Mayne A J, Carbone M, Dujardin G 2003 Phys. Rev. B 68 035303Google Scholar

    [128]

    Weber B, Tan Y H, Mahapatra S, Watson T F, Ryu H, Rahman R, Hollenberg L C, Klimeck G, Simmons M Y 2014 Nat. Nanotechnol. 9 430Google Scholar

    [129]

    Broome M A, Gorman S K, House M G, Hile S J, Keizer J G, Keith D, Hill C D, Watson T F, Baker W J, Hollenberg L C L, Simmons M Y 2018 Nat. Commun. 9 980Google Scholar

  • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] 朱孟龙, 杨俊, 董玉兰, 周源, 邵岩, 侯海良, 陈智慧, 何军. Cu(111)衬底上单层铁电GeS薄膜的原子和电子结构研究. 物理学报, 2024, 73(1): 010701. doi: 10.7498/aps.73.20231246
    [3] 韩相和, 黄子豪, 范朋, 朱诗雨, 申承民, 陈辉, 高鸿钧. 表面原子操纵与物性调控研究进展. 物理学报, 2022, 71(12): 128102. doi: 10.7498/aps.71.20220405
    [4] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [5] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构. 物理学报, 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [6] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [8] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [9] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [10] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [11] 彭小芳, 陈丽群, 罗勇锋, 刘凌虹, 王凯军. 含双T形量子结构的量子波导中声学声子输运和热导. 物理学报, 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [12] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [13] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [14] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [15] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [16] 王新军, 王玲玲, 黄维清, 唐黎明, 陈克求. 磁场下含结构缺陷多组分超晶格中的局域电子态和电子输运. 物理学报, 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [17] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [18] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  15477
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 上网日期:  2021-01-14
  • 刊出日期:  2021-01-20

/

返回文章
返回