Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on X-band repetitively oversized backward wave oscillator

Wu Yang Jin Xiao Ma Qiao-Sheng Li Zheng-Hong Ju Bing-Quan Su Chang Xu Zhou Tang Chuan-Xiang

Experimental study on X-band repetitively oversized backward wave oscillator

Wu Yang, Jin Xiao, Ma Qiao-Sheng, Li Zheng-Hong, Ju Bing-Quan, Su Chang, Xu Zhou, Tang Chuan-Xiang
PDF
Get Citation
  • A new type of high power microwave device is developed based on bitron and backward wave oscillator. The device is composed of two parts: the modulation cavity and the extraction cavity (which is similar to slow wave structure). The modulation cavity acts as electron beam modulator and microwave reflector, which forms a microwave resonator in combination of the extraction cavity. The electron is modulated when it passes through the modulation cavity, and the high power microwave is generated when the modulated beam passes through the extraction cavity. An X-band high power microwave device is designed for a 20 GW accelerator, and the simulation results are frequency 8.25 GHz and output power 5.70 GW. Using superconducting magnet as guiding magnet, a microwave power of 5.20 GW at X-band (frequency (8.250.01)GHz) is obtained in single pulse mode. The radiation power is 5.06 GW when the repetition rate is 30 Hz, and the pulse length is 13.8 ns.
    [1]

    Li Z H, Meng F B, Chang A B 2005 Acta Phys. Sin. 54 3578 (in Chinese) [李正红、 孟凡宝、 常安碧 2005 物理学报 54 3578]

    [2]

    Shiffler D, Nation J A 1991 J. Appl. Phys. 70 106

    [3]
    [4]

    Freund H P 2000 IEEE Trans. Plasma Sci. 28 748

    [5]
    [6]

    Li Z H, Hu K S, Zhang H 2002 High Power Laser and Particle Beams 13 99 (in Chinese) [李正红、 胡克松、 张 红 2002 强激光与粒子束 13 99]

    [7]
    [8]

    Huang H, Fan Z K, Tan J, Ma Q S, Gan Y Q, Chang A B 2004 Acta Phys. Sin. 53 1129 (in Chinese)[黄 华、 范植开、 谭 杰、 马乔生、 甘延青、 常安碧 2004 物理学报 53 1129]

    [9]
    [10]

    Nation J A 1970 Appl. Phys. Lett. 17 491

    [11]
    [12]

    Kovalev N F, Petelin M I, Raiser M D, Smorgonsky A V, Tsopp L E 1973 Lett. J. Techn. Phys. 18 232

    [13]
    [14]

    Carmel Y J, Ivers J, Kribel R E, Nation J A 1974 Phys. Rev. Lett. 33 1278

    [15]
    [16]

    Agee F J 1998 IEEE Trans. Plasma Sci. 26 235

    [17]
    [18]

    Buagaev S P, Cherepenin V A, Kanavets V I, Klimov A I, Openkin A D, Koshelev V I 1990 IEEE Trans. Plasma Sci. 18 525

    [19]
    [20]

    Buagaev S P, Cherepenin V A, Kanavets V I, Popov V A, Vlasov A N 1990 IEEE Trans. Plasma Sci. 18 518

    [21]
    [22]
    [23]

    Vlasov A N, Shkvarunets A G, Rodgers J C 2000 IEEE Trans. Plasma Sci. 28 550

    [24]

    Li Z H 2008 Appl. Phys. Lett. 92 541

    [25]
    [26]
    [27]

    Chen X, Lindsay P A, Zhang J 2000 IEEE Trans. Plasma Sci. 28 462

    [28]

    Barroso J J 2000 IEEE Trans. Plasma Sci. 28 652

    [29]
  • [1]

    Li Z H, Meng F B, Chang A B 2005 Acta Phys. Sin. 54 3578 (in Chinese) [李正红、 孟凡宝、 常安碧 2005 物理学报 54 3578]

    [2]

    Shiffler D, Nation J A 1991 J. Appl. Phys. 70 106

    [3]
    [4]

    Freund H P 2000 IEEE Trans. Plasma Sci. 28 748

    [5]
    [6]

    Li Z H, Hu K S, Zhang H 2002 High Power Laser and Particle Beams 13 99 (in Chinese) [李正红、 胡克松、 张 红 2002 强激光与粒子束 13 99]

    [7]
    [8]

    Huang H, Fan Z K, Tan J, Ma Q S, Gan Y Q, Chang A B 2004 Acta Phys. Sin. 53 1129 (in Chinese)[黄 华、 范植开、 谭 杰、 马乔生、 甘延青、 常安碧 2004 物理学报 53 1129]

    [9]
    [10]

    Nation J A 1970 Appl. Phys. Lett. 17 491

    [11]
    [12]

    Kovalev N F, Petelin M I, Raiser M D, Smorgonsky A V, Tsopp L E 1973 Lett. J. Techn. Phys. 18 232

    [13]
    [14]

    Carmel Y J, Ivers J, Kribel R E, Nation J A 1974 Phys. Rev. Lett. 33 1278

    [15]
    [16]

    Agee F J 1998 IEEE Trans. Plasma Sci. 26 235

    [17]
    [18]

    Buagaev S P, Cherepenin V A, Kanavets V I, Klimov A I, Openkin A D, Koshelev V I 1990 IEEE Trans. Plasma Sci. 18 525

    [19]
    [20]

    Buagaev S P, Cherepenin V A, Kanavets V I, Popov V A, Vlasov A N 1990 IEEE Trans. Plasma Sci. 18 518

    [21]
    [22]
    [23]

    Vlasov A N, Shkvarunets A G, Rodgers J C 2000 IEEE Trans. Plasma Sci. 28 550

    [24]

    Li Z H 2008 Appl. Phys. Lett. 92 541

    [25]
    [26]
    [27]

    Chen X, Lindsay P A, Zhang J 2000 IEEE Trans. Plasma Sci. 28 462

    [28]

    Barroso J J 2000 IEEE Trans. Plasma Sci. 28 652

    [29]
  • [1] Xie Wen-Qiu, Wang Zi-Cheng, Luo Ji-Run, Liu Qing-Lun, Dong Fang. Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam. Acta Physica Sinica, 2013, 62(15): 158503. doi: 10.7498/aps.62.158503
    [2] Li Zheng-Hong, Chang An-Bi, Ju Bing-Quan, Zhang Youg-Hui, Xiang Fei, Zhao Dian-Lin, Gan Yan-Qing, Liu Zhong, Su Chang, Huang Hua. Experimental and theoretical study of a quasi-bitron as a new high-power microwave device. Acta Physica Sinica, 2007, 56(5): 2603-2607. doi: 10.7498/aps.56.2603
    [3] Chen Da-Peng, Xing Chun-Fei, Zhang Zheng, Zhang Cun-Lin. Terahertz thermal wave nondestructive test. Acta Physica Sinica, 2012, 61(2): 024202. doi: 10.7498/aps.61.024202
    [4] Li Zheng-Hong, Meng Fan-Bao, Chang An-Bi, Huang Hua, Ma Qiao-Sheng. Investigation of bitron as a high power microwave oscillator. Acta Physica Sinica, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
    [5] Du Chao-Hai, Li Zheng-Di, Xue Zhi-Hao, Liu Pu-Kun, Xue Qian-Zhong, Zhang Shi-Chang, Xu Shou-Xi, Geng Zhi-Hui, Gu Wei, Su Yi-Nong, Liu Gao-Feng. Research on the mode competition in a w-band lossy ceramic-loaded gyrotron backward-wave oscillator. Acta Physica Sinica, 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [6] Zhang Yun-Jian, Meng Fan-Bao, Fan Zhi-Kai, Luo Xiong. A proposed high electrical efficiency and high current intensity radial split-cavity oscillator. Acta Physica Sinica, 2008, 57(2): 975-979. doi: 10.7498/aps.57.975
    [7] PING-CHUAN FENG. NOTES ON THE PLATE EFFICIENCY OF POWER OSCILLATORS. Acta Physica Sinica, 1949, 13(4): 43-51. doi: 10.7498/aps.7.43
    [8] PING-CHUAN FENG, PENG-FEI HSU. PHASE COMPENSATION IN POWER OSCILLATORS. Acta Physica Sinica, 1950, 15(6): 59-71. doi: 10.7498/aps.7.59
    [9] Xin Xiang-Jun, Yin Xiao-Li, Zhang Qi, Liu Hui-Shi, Yu Chong-Xiu. An optimization scheme for generating of Chebyshev optical chaotic sequence. Acta Physica Sinica, 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
    [10] Xu Bi-Rong, Wang Guang-Yi. Meminductive Wein-bridge chaotic oscillator. Acta Physica Sinica, 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
  • Citation:
Metrics
  • Abstract views:  1369
  • PDF Downloads:  655
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2010
  • Accepted Date:  19 January 2011
  • Published Online:  15 August 2011

Experimental study on X-band repetitively oversized backward wave oscillator

  • 1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
  • 2. Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China

Abstract: A new type of high power microwave device is developed based on bitron and backward wave oscillator. The device is composed of two parts: the modulation cavity and the extraction cavity (which is similar to slow wave structure). The modulation cavity acts as electron beam modulator and microwave reflector, which forms a microwave resonator in combination of the extraction cavity. The electron is modulated when it passes through the modulation cavity, and the high power microwave is generated when the modulated beam passes through the extraction cavity. An X-band high power microwave device is designed for a 20 GW accelerator, and the simulation results are frequency 8.25 GHz and output power 5.70 GW. Using superconducting magnet as guiding magnet, a microwave power of 5.20 GW at X-band (frequency (8.250.01)GHz) is obtained in single pulse mode. The radiation power is 5.06 GW when the repetition rate is 30 Hz, and the pulse length is 13.8 ns.

Reference (29)

Catalog

    /

    返回文章
    返回