Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency

Fang Xin Shen Wen-Zhong

Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency

Fang Xin, Shen Wen-Zhong
PDF
Get Citation
  • Understanding and controlling the impurity behavior are important for low-cost and high-efficiency of multi-crystalline silicon solar cells. We employ the infrared spectroscopy to study the change of oxygen and carbon concentrations after thermal treatment in different parts of multi-crystalline silicon ingots grown by directional solidification technology. In correlation with the solar cell performances such as the minority carrier lifetime, photoelectric conversion efficiency and internal quantum efficiency, we investigate the physical mechanism of the effects of various concentrations of oxygen and carbon on cell performance. We propose an oxygen precipitation growth model considering the influence of carbon to simulate the size distribution and concentration of oxygen precipitation after the thermal treatment. It is found that carbon not only deteriorates the efficiency of the cells made from the silicon from the top part of the ingot, but also plays an important role in the effect of oxygen precipitation: enhancing the size and the quantity of oxygen precipitation in the silicon from the middle part of the ingot, which induces the defect and increases the recombination; while resulting in the small size and low quantity of oxygen precipitation in the silicon from the bottom part due to the low carbon content, thereby improving the cell efficiency through gettering impurities. We further demonstrate the complex behaviors of oxygen and carbon by a two-step thermal treatment technique, from which we point out that the two-step thermal treatment is applicable only to the improvement of the efficiency of solar cells from the bottom part of multi-crystalline silicon ingots.
    • Funds:
    [1]

    Gou X F, Xu Y, Li X D, Heng Y, Ma L F, Ren B Y 2006 Rare Metals 25 173

    [2]
    [3]

    Wijaranakula W 1996 J. Appl. Phys. 79 4450

    [4]
    [5]

    Lu J G, Rozgonyi G, Rand J, Jonczyk R 2004 Appl. Phys. Lett. 85 1178

    [6]

    Bauer J, Breitenstein O, Rakotoniaina J P 2007 Phys. Stat. Sol. A 204 2190

    [7]
    [8]
    [9]

    Moller H J, Kaden T, Scholz S, Wurzner S 2009 Appl. Phys. A 96 207

    [10]
    [11]

    Ohshita Y, Nishikawa Y, Tachibana M, Tuong V K, Sasaki T, Kojima N, Tanaka S, Yamaguchi M 2005 J. Cryst. Growth 275 e491

    [12]
    [13]

    Breitenstein O, Bauer J, Lotnyk A, Wagner J M 2009 Superl. Microstr. 45 182

    [14]

    Yang D R, Moeller H J 2002 Sol. Energy Mater. Sol. Cells 72 541

    [15]
    [16]

    Moller H J, Funke C, Lawerenz A, Riedel S, Werner M 2002 Sol. Energy Mater. Sol. Cells 72 403

    [17]
    [18]

    Moller H J, Long L, Werner M, Yang D 1999 Phys. Stat. Sol. A 171 175

    [19]
    [20]
    [21]

    Matsuo H, Hisamatsu S, Kangawa Y, Kakimoto K 2009 J. Electrochem. Soc. 156 H711

    [22]
    [23]

    Kvande R, Arnberg L, Martin C 2009 J. Cryst. Growth 311 765

    [24]
    [25]

    Kvande R, Mjos O, Ryningen B 2005 Mater. Sci. Eng. A 413 545

    [26]

    Reimann C, Trempa M, Jung T, Friedrich J, Muller G 2010 J. Cryst. Growth 312 878

    [27]
    [28]
    [29]

    Kubena J, Kubena A, Caha O, Mikulik P 2007 J. Phys.:Condens. Matter 19 496202

    [30]
    [31]

    Niethammer B 2003 J. Nonlin. Sci. 13 115

    [32]
    [33]

    Kovalev I D, Kotereva T V, Gusev A V, Gavva V A, Ovehinnikov D K 2008 J. Anal. Chem. 63 248

    [34]
    [35]

    Shimura F 1986 J. Appl. Phys. 59 3251

    [36]
    [37]

    Falster R, Voronkov V V, Quast F 2000 Phys. Stat. Sol. B 222 219

    [38]
    [39]

    Kelton K F, Falster R, Gambaro D, Olmo M, Cornara M, Wei P F 1999 J. Appl. Phys. 85 8097

    [40]
    [41]

    Isomae S 1991 J. Appl. Phys. 70 4217

    [42]

    Efremov A A, Litovchenko V G, Romanova G P, Sarikov A V, Claeys C 2001 J. Electrochem. Soc. 148 F92

    [43]
    [44]

    Ren B Y, Huo X M, Zuo Y, Fu H B, Li X D, Xu Y, Wang W J, Zhao Y W 2003 China Solar Energy Society Annual Conference in 2003 (Shanghai: Shanghai Jiaotong University Press) p77 (in Chinese) [任丙彦、 霍秀敏、 左 燕、傅洪波、 励旭东、 许 颖、 王文静、 赵玉文 2003 2003年中国太阳能学会学术年会论文集 (上海:上海交通大学出版社) 第77页]

    [45]
  • [1]

    Gou X F, Xu Y, Li X D, Heng Y, Ma L F, Ren B Y 2006 Rare Metals 25 173

    [2]
    [3]

    Wijaranakula W 1996 J. Appl. Phys. 79 4450

    [4]
    [5]

    Lu J G, Rozgonyi G, Rand J, Jonczyk R 2004 Appl. Phys. Lett. 85 1178

    [6]

    Bauer J, Breitenstein O, Rakotoniaina J P 2007 Phys. Stat. Sol. A 204 2190

    [7]
    [8]
    [9]

    Moller H J, Kaden T, Scholz S, Wurzner S 2009 Appl. Phys. A 96 207

    [10]
    [11]

    Ohshita Y, Nishikawa Y, Tachibana M, Tuong V K, Sasaki T, Kojima N, Tanaka S, Yamaguchi M 2005 J. Cryst. Growth 275 e491

    [12]
    [13]

    Breitenstein O, Bauer J, Lotnyk A, Wagner J M 2009 Superl. Microstr. 45 182

    [14]

    Yang D R, Moeller H J 2002 Sol. Energy Mater. Sol. Cells 72 541

    [15]
    [16]

    Moller H J, Funke C, Lawerenz A, Riedel S, Werner M 2002 Sol. Energy Mater. Sol. Cells 72 403

    [17]
    [18]

    Moller H J, Long L, Werner M, Yang D 1999 Phys. Stat. Sol. A 171 175

    [19]
    [20]
    [21]

    Matsuo H, Hisamatsu S, Kangawa Y, Kakimoto K 2009 J. Electrochem. Soc. 156 H711

    [22]
    [23]

    Kvande R, Arnberg L, Martin C 2009 J. Cryst. Growth 311 765

    [24]
    [25]

    Kvande R, Mjos O, Ryningen B 2005 Mater. Sci. Eng. A 413 545

    [26]

    Reimann C, Trempa M, Jung T, Friedrich J, Muller G 2010 J. Cryst. Growth 312 878

    [27]
    [28]
    [29]

    Kubena J, Kubena A, Caha O, Mikulik P 2007 J. Phys.:Condens. Matter 19 496202

    [30]
    [31]

    Niethammer B 2003 J. Nonlin. Sci. 13 115

    [32]
    [33]

    Kovalev I D, Kotereva T V, Gusev A V, Gavva V A, Ovehinnikov D K 2008 J. Anal. Chem. 63 248

    [34]
    [35]

    Shimura F 1986 J. Appl. Phys. 59 3251

    [36]
    [37]

    Falster R, Voronkov V V, Quast F 2000 Phys. Stat. Sol. B 222 219

    [38]
    [39]

    Kelton K F, Falster R, Gambaro D, Olmo M, Cornara M, Wei P F 1999 J. Appl. Phys. 85 8097

    [40]
    [41]

    Isomae S 1991 J. Appl. Phys. 70 4217

    [42]

    Efremov A A, Litovchenko V G, Romanova G P, Sarikov A V, Claeys C 2001 J. Electrochem. Soc. 148 F92

    [43]
    [44]

    Ren B Y, Huo X M, Zuo Y, Fu H B, Li X D, Xu Y, Wang W J, Zhao Y W 2003 China Solar Energy Society Annual Conference in 2003 (Shanghai: Shanghai Jiaotong University Press) p77 (in Chinese) [任丙彦、 霍秀敏、 左 燕、傅洪波、 励旭东、 许 颖、 王文静、 赵玉文 2003 2003年中国太阳能学会学术年会论文集 (上海:上海交通大学出版社) 第77页]

    [45]
  • [1] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [2] Yan Qiang, Song Hui-Jin, Zheng Jia-Gui, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Wei, Li Bing, Wu Li-Li, Lei Zhi. Performance of CdTe solar cells with different back electrodes and back contact layers. Acta Physica Sinica, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [3] WANG XUAN, LIU SHOU-XIN, LI YONG-FANG, YANG HE-QING, ZHANG LIANG-YING, YAO XI. SYNTHESIS AND QUANTUM SIZE EFFECT OF CARBON NANOPARTICLES DOPED IN GEL-GLASSES. Acta Physica Sinica, 2001, 50(2): 341-346. doi: 10.7498/aps.50.341
    [4] Zeng Xiang-An, Ai Bin, Deng You-Jun, Shen Hui. Study on light-induced degradation of silicon wafers and solar cells. Acta Physica Sinica, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [5] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [6] Zhou Cheng, Wang Pei-Ji, Zhang Zhong, Li Ping, Gao Yan-Xia. Theoretical analysis of second-harmonic conversion efficiency in negative-index materials. Acta Physica Sinica, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [7] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [8] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [9] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Kong Fan-Tai, Hu Lin-Hua, Pan Xu, Shi Cheng-Wu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [10] Weng Jian, Xiao Shang-Feng, Chen Shuang-Hong, Dai Song-Yuan. Research on the dye-sensitized solar cell module. Acta Physica Sinica, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [11] Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian, Cai Hong-Kun, Tao Ke. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [12] Kou Dong-Xing, Jiang Nian-Quan, Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [13] Kou Dong-Xing, Jiang Nian-Quan, Liu Wei-Qing, Hu Lin-Hua, Huang Yang, Dai Song-Yuan. The investigation on the mechanism of enhanced performance of dye-sensitized solar cells after anode modified. Acta Physica Sinica, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [14] Chen Shuang-Hong, Weng Jian, Wang Li-Jun, Zhang Chang-Neng, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan. The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias. Acta Physica Sinica, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [15] Zhou Xiao-Ming, Deng Jun-Yu, Yu Huang-Zhong. Annealing treatment effects on the performances of solar cells based on different solvent blend systems. Acta Physica Sinica, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [16] Han An-Jun, Sun Yun, Li Zhi-Guo, Li Bo-Yan, He Jing-Jing, Zhang Yi, Liu Wei. The high efficiency sub-micrometer Cu(In, Ga)Se2 solar cell prepared on low temperature. Acta Physica Sinica, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [17] Cao Yu, Zhang Jian-Jun, Li Tian-Wei, Huang Zhen-Hua, Ma Jun, Ni Jian, Geng Xin-Hua, Zhao Ying. Optimization of the longitudinal structure of intrinsic layer in microcrystalline silicon germanium solar cell. Acta Physica Sinica, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [18] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [19] Zhang Zhong-Zheng, Cheng Xiao-Fang. Dual-origin coordinate system for solar cells. Acta Physica Sinica, 2014, 63(11): 118801. doi: 10.7498/aps.63.118801
    [20] Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao. Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter. Acta Physica Sinica, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
  • Citation:
Metrics
  • Abstract views:  1709
  • PDF Downloads:  1328
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2010
  • Accepted Date:  12 January 2011
  • Published Online:  15 August 2011

Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency

  • 1. Key Laboratory for Artificial Structures and Quantum Control of Ministry of Education, Institute of Solar Energy, Department of Physics,Shanghai Jiaotong University, Shanghai 200240, China

Abstract: Understanding and controlling the impurity behavior are important for low-cost and high-efficiency of multi-crystalline silicon solar cells. We employ the infrared spectroscopy to study the change of oxygen and carbon concentrations after thermal treatment in different parts of multi-crystalline silicon ingots grown by directional solidification technology. In correlation with the solar cell performances such as the minority carrier lifetime, photoelectric conversion efficiency and internal quantum efficiency, we investigate the physical mechanism of the effects of various concentrations of oxygen and carbon on cell performance. We propose an oxygen precipitation growth model considering the influence of carbon to simulate the size distribution and concentration of oxygen precipitation after the thermal treatment. It is found that carbon not only deteriorates the efficiency of the cells made from the silicon from the top part of the ingot, but also plays an important role in the effect of oxygen precipitation: enhancing the size and the quantity of oxygen precipitation in the silicon from the middle part of the ingot, which induces the defect and increases the recombination; while resulting in the small size and low quantity of oxygen precipitation in the silicon from the bottom part due to the low carbon content, thereby improving the cell efficiency through gettering impurities. We further demonstrate the complex behaviors of oxygen and carbon by a two-step thermal treatment technique, from which we point out that the two-step thermal treatment is applicable only to the improvement of the efficiency of solar cells from the bottom part of multi-crystalline silicon ingots.

Reference (45)

Catalog

    /

    返回文章
    返回