Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulations of immiscible two-phase flow displacement based on 3D network model for fractal porous media

Zhao Ming Yu Boming

Numerical simulations of immiscible two-phase flow displacement based on 3D network model for fractal porous media

Zhao Ming, Yu Boming
PDF
Get Citation
  • In order to describe the pore scale fractal distribution, we present a 3D network model for fractal porous medium in this paper. According to the proposed model we simulate the immiscible two-phase flow displacement in a medium and study the viscous fingering pattern of displacement front influenced by the fractal dimension Df for pore size distribution and viscosity ratio M. The simulation results show that the capacity dimension Dh of the viscous fingering pattern decreases with Df and M increasing, and their quantitative relationship is derived by fitting the obtained data.
    • Funds:
    [1]

    Bensimon D, Kadanoff L P, Liang S 1996 Rev. Mod. Phys. 58 977

    [2]

    Scheidegger A E 1974 The Physics of Flow through Porous Media (Toronto: Univ.of Toronto Press) p236

    [3]

    King P R 1987 Phys. A: Math. Gen. 20 529

    [4]

    Tian J P,Yao K L 2001 Chin. Phys. 10 128

    [5]

    Luo Y Y, Zhan J M, Li M X. 2008 Acta Phys. Sin. 57 2306 (in Chinese) [罗莹莹、 詹杰民、 李毓湘 2008 物理学报 57 2306]

    [6]

    Ferer M, Bromhal G S, Simth D H 2009 Phys. Rev. E 80 011602

    [7]

    Xu Y S 2003 Acta Phys. Sin. 52 626 (in chinese)[许友生 2003 物理学报 52 626]

    [8]

    Huang G-X, Liu Y, Wu B-Z, Xu Y-S 2005 Chin. Phys. 14 2046

    [9]

    Zhang T, Li D L, Lu D T 2009 Sci. China G 39 1348 (in Chinese) [张 挺、 李道伦、 卢德唐 2009 中国科学G 39 1348]

    [10]

    Katz A J, Thompson A H 1985 Phys. Rev. Lett. 54 1325

    [11]

    Wong P Z 1988 Physics Today 41 24

    [12]

    Yu B M, Li J H 2001 Fractals 9 365

    [13]

    Yu B M, Chen P 2002 Int. J. Heat Mass Transfer 45 2983

    [14]

    Yu B M 2008 Appl. Mech. Rev. 61 050801

    [15]

    Yu B M 2009 Chinese Mechanics Digest. 23 1(in Chinese)[郁伯铭 2009 中国力学文摘 23 1]

    [16]

    Valvatne P, Piri M, Lopez X 2005 Transport in Porous Media 58 23

    [17]

    Chen J D, Wilkinson D 1985 Phys. Rev. Lett. 55 1892

    [18]

    Peyret R 1996 Handbook of computational fluid mechanics (New York: Academic Press Limited) p198

    [19]

    Xu S L 1995 Common Algorithms for Computers (Beijing: Tsinghua Press) p95(in Chinese)[徐士良1995 计算机常用算法 (北京: 清华大学出版社) 第95页]

    [20]

    Yu B M, Zou M Q Feng Y J 2005 International Journal of Heat and Mass Transfer 48 2787

    [21]

    Zou M Q, Yu B M, Feng Y J, Xu P 2007 Physica A 386 176

    [22]

    Feng Y J, Yu B M, Xu P Zou M Q, 2008 J. Nanoparticle Research 10 1319

  • [1]

    Bensimon D, Kadanoff L P, Liang S 1996 Rev. Mod. Phys. 58 977

    [2]

    Scheidegger A E 1974 The Physics of Flow through Porous Media (Toronto: Univ.of Toronto Press) p236

    [3]

    King P R 1987 Phys. A: Math. Gen. 20 529

    [4]

    Tian J P,Yao K L 2001 Chin. Phys. 10 128

    [5]

    Luo Y Y, Zhan J M, Li M X. 2008 Acta Phys. Sin. 57 2306 (in Chinese) [罗莹莹、 詹杰民、 李毓湘 2008 物理学报 57 2306]

    [6]

    Ferer M, Bromhal G S, Simth D H 2009 Phys. Rev. E 80 011602

    [7]

    Xu Y S 2003 Acta Phys. Sin. 52 626 (in chinese)[许友生 2003 物理学报 52 626]

    [8]

    Huang G-X, Liu Y, Wu B-Z, Xu Y-S 2005 Chin. Phys. 14 2046

    [9]

    Zhang T, Li D L, Lu D T 2009 Sci. China G 39 1348 (in Chinese) [张 挺、 李道伦、 卢德唐 2009 中国科学G 39 1348]

    [10]

    Katz A J, Thompson A H 1985 Phys. Rev. Lett. 54 1325

    [11]

    Wong P Z 1988 Physics Today 41 24

    [12]

    Yu B M, Li J H 2001 Fractals 9 365

    [13]

    Yu B M, Chen P 2002 Int. J. Heat Mass Transfer 45 2983

    [14]

    Yu B M 2008 Appl. Mech. Rev. 61 050801

    [15]

    Yu B M 2009 Chinese Mechanics Digest. 23 1(in Chinese)[郁伯铭 2009 中国力学文摘 23 1]

    [16]

    Valvatne P, Piri M, Lopez X 2005 Transport in Porous Media 58 23

    [17]

    Chen J D, Wilkinson D 1985 Phys. Rev. Lett. 55 1892

    [18]

    Peyret R 1996 Handbook of computational fluid mechanics (New York: Academic Press Limited) p198

    [19]

    Xu S L 1995 Common Algorithms for Computers (Beijing: Tsinghua Press) p95(in Chinese)[徐士良1995 计算机常用算法 (北京: 清华大学出版社) 第95页]

    [20]

    Yu B M, Zou M Q Feng Y J 2005 International Journal of Heat and Mass Transfer 48 2787

    [21]

    Zou M Q, Yu B M, Feng Y J, Xu P 2007 Physica A 386 176

    [22]

    Feng Y J, Yu B M, Xu P Zou M Q, 2008 J. Nanoparticle Research 10 1319

  • [1] Wang Ping, Yin Yu-Zhen, Shen Sheng-Qiang. Numerical study of convection heat transfer in ordered three-dimensional porous media. Acta Physica Sinica, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [2] Lou Qin, Huang Yi-Fan, Li Ling. Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media. Acta Physica Sinica, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [3] Jia Yu-Peng, Wang Jing-Fu, Zheng Kun-Can, Zhang Bing, Pan Gang, Gong Zhi-Jun, Wu Wen-Fei. Measurement of single phase flow in porous media using PIV technique. Acta Physica Sinica, 2016, 65(10): 106701. doi: 10.7498/aps.65.106701
    [4] Li Yok-Sheung, Luo Ying-Ying, Zhan Jie-Min. Numerical simulation of salt finger convection in porous media. Acta Physica Sinica, 2008, 57(4): 2306-2313. doi: 10.7498/aps.57.2306
    [5] Han Qing-Bang, Xu Shan, Xie Zu-Feng, Ge Rui, Wang Xi, Zhao Sheng-Yong, Zhu Chang-Ping. Analysis and experimental verification of the relation between Scholte wave velocity and sediment containing two-phase fluid properties. Acta Physica Sinica, 2013, 62(19): 194301. doi: 10.7498/aps.62.194301
    [6] Qiao Hou, He Zeng, Zhang Heng-Kun, Peng Wei-Cai, Jiang Wen. Sound transmission in two-dimensional periodic poroelastic structures. Acta Physica Sinica, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [7] Cui Zhi-Wen, Wang Ke-Xie, Cao Zheng-Liang, Hu Heng-Shan. Slow waves propagation in BISQ poroelastic model. Acta Physica Sinica, 2004, 53(9): 3083-3089. doi: 10.7498/aps.53.3083
    [8] Zheng Kun-Can, Wen Zhi, Wang Zhan-Sheng, Lou Guo-Feng, Liu Xun-Liang, Wu Wen-Fei. Review on forced convection heat transfer in porous media. Acta Physica Sinica, 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [9] Liu Gao-Jie, Guo Zhao-Li, Shi Bao-Chang. A coupled lattice Boltzmann model for fluid flow and diffusion in a porous medium. Acta Physica Sinica, 2016, 65(1): 014702. doi: 10.7498/aps.65.014702
    [10] Qiu Hao-Miao, Xia Tang-Dai, He Shao-Heng, Chen Wei-Yun. Propagation characteristics of pseudo-Scholte waves at the interface between finite-thickness fluid layer and quasi-saturated porous half-space. Acta Physica Sinica, 2018, 67(20): 204302. doi: 10.7498/aps.67.20180853
  • Citation:
Metrics
  • Abstract views:  3393
  • PDF Downloads:  928
  • Cited By: 0
Publishing process
  • Received Date:  17 May 2010
  • Accepted Date:  26 December 2010
  • Published Online:  15 September 2011

Numerical simulations of immiscible two-phase flow displacement based on 3D network model for fractal porous media

  • 1. (1)School of Physics Science and Technology, Yangtze University, Jingzhou 434023, China; (2)School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract: In order to describe the pore scale fractal distribution, we present a 3D network model for fractal porous medium in this paper. According to the proposed model we simulate the immiscible two-phase flow displacement in a medium and study the viscous fingering pattern of displacement front influenced by the fractal dimension Df for pore size distribution and viscosity ratio M. The simulation results show that the capacity dimension Dh of the viscous fingering pattern decreases with Df and M increasing, and their quantitative relationship is derived by fitting the obtained data.

Reference (22)

Catalog

    /

    返回文章
    返回