Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition

Wang Wen-Rong Zhou Yu-Xiu Li Tie Wang Yue-Lin Xie Xiao-Ming

Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition

Wang Wen-Rong, Zhou Yu-Xiu, Li Tie, Wang Yue-Lin, Xie Xiao-Ming
PDF
Get Citation
  • Graphene has received great interest because of its peculiar band structure and excellent physical properties. But today, the development of graphene is limited to its size and quality. In this paper, single- and multilayer graphene films were synthesized on copper foils by chemical vapor deposition(CVD) using methane at ambient pressure. Experiment results find the high temperature, low concentration of methane gas, shorter growth time and suitable gas flow are the key to get high-quality and large-scale graphene films. Raman spectra, scanning electron microscope(SEM) and transmission electron microscope(TEM) characterization indicate the graphene films are mostly single-layer, only with rare area having multilayer around copper boundaries. Further electrical tests show the graphene films grown by CVD method represent semiconductor behaviors under low temperature and the sheet resistance of graphene films is decreasing with the external magnetic field increasing.
    • Funds: Project supported by the Important National Science and Technology Specific Projects (Grant No. 2011ZX02707), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-YW-23), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61021064), and the National Natural Science Foundation of China (Grant Nos. 60936001, 60876037).
    [1]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [2]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [3]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K2009 Rev. Mod. Phys. 81 109

    [4]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys.Sin. 59 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2010 物理学报 59 7156]

    [5]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, YangH F, Yang C L, Lü L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 物理学报 58 5726]

    [6]

    Ruoff R 2008 Nature Nanotech. 3 10

    [7]

    Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B,Zhu Y, Avouris P 2011 Nature 472 74

    [8]

    Park N, Hong S, Kim G, Jhi S H 2007 J. Am. Chem. Soc. 1298999

    [9]

    Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee Y H, Suh M 2011Biomaterials 32 19

    [10]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photonics4 611

    [11]

    Loh K P, Bao Q L, Eda G, Chhowalla M 2011 Nature Chemistry2 1015

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,Dubonos S V, Grigorieva I V, Firsov 2004 Science 306 666

    [13]

    Stankovich S , Dikin D A, Piner R D, Kohlhass K A, KleinhammesA, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [14]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, MayouD, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, Heer W A 2006 Science 312 1191

    [15]

    Rummeli M H, Bachmatiuk A, Scott A, Borrnert F, Warner J H,Hoffman V, Lin J H, Cuniberti G, Buchner B 2010 ACS Nano 44206

    [16]

    Wei D C, Liu Y Q, Zhang H L, Huang L P, Wu Bin, Chen J Y, Yu G 2009 J. Am. Chem. Soc. 131 11147

    [17]

    Ding X L, Ding G Q, Xie X M, Huang F Q, Jiang M H 2011Carbon 49 2522

    [18]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [19]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151

    [20]

    Coraus J, N'Diaye A, Engler M, Busse C, Wall D, Buckanie N,Heringdorf F J M, Gastel R, Poelsema B, Michely T 2009 New J.Phys. 11 023006

    [21]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff RS 2009 Science 324 1312

    [22]

    Su C Y, Fu D L, Lu A Y, Liu K K, Xu Y P, Juang Z Y, Li L J 2011 Nanotechnology 22 185309

    [23]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, MauriF, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006Phys. Rev. Lett. 97 187401

    [24]

    Ni Z H, Wang Y Y, Yu T, Shen Z X 2008 Nano Res. 1 273

    [25]

    Yutaka K 1982 J. Phys. C: Solid State Phys. 15 5425

  • [1]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [2]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [3]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K2009 Rev. Mod. Phys. 81 109

    [4]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys.Sin. 59 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2010 物理学报 59 7156]

    [5]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, YangH F, Yang C L, Lü L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 物理学报 58 5726]

    [6]

    Ruoff R 2008 Nature Nanotech. 3 10

    [7]

    Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B,Zhu Y, Avouris P 2011 Nature 472 74

    [8]

    Park N, Hong S, Kim G, Jhi S H 2007 J. Am. Chem. Soc. 1298999

    [9]

    Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee Y H, Suh M 2011Biomaterials 32 19

    [10]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photonics4 611

    [11]

    Loh K P, Bao Q L, Eda G, Chhowalla M 2011 Nature Chemistry2 1015

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,Dubonos S V, Grigorieva I V, Firsov 2004 Science 306 666

    [13]

    Stankovich S , Dikin D A, Piner R D, Kohlhass K A, KleinhammesA, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [14]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, MayouD, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, Heer W A 2006 Science 312 1191

    [15]

    Rummeli M H, Bachmatiuk A, Scott A, Borrnert F, Warner J H,Hoffman V, Lin J H, Cuniberti G, Buchner B 2010 ACS Nano 44206

    [16]

    Wei D C, Liu Y Q, Zhang H L, Huang L P, Wu Bin, Chen J Y, Yu G 2009 J. Am. Chem. Soc. 131 11147

    [17]

    Ding X L, Ding G Q, Xie X M, Huang F Q, Jiang M H 2011Carbon 49 2522

    [18]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [19]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151

    [20]

    Coraus J, N'Diaye A, Engler M, Busse C, Wall D, Buckanie N,Heringdorf F J M, Gastel R, Poelsema B, Michely T 2009 New J.Phys. 11 023006

    [21]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff RS 2009 Science 324 1312

    [22]

    Su C Y, Fu D L, Lu A Y, Liu K K, Xu Y P, Juang Z Y, Li L J 2011 Nanotechnology 22 185309

    [23]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, MauriF, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006Phys. Rev. Lett. 97 187401

    [24]

    Ni Z H, Wang Y Y, Yu T, Shen Z X 2008 Nano Res. 1 273

    [25]

    Yutaka K 1982 J. Phys. C: Solid State Phys. 15 5425

  • [1] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] Bai Jia-Hao, Guo Jian-Gang. Theoretical studies on bidirectional interfacial shear stress transfer of graphene/flexible substrate composite structure. Acta Physica Sinica, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [3] Current Phases in Hofstadter Ladder with Staggered Hopping. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191964
    [4] Zuo Fu-Chang, Mei Zhi-Wu, Deng Lou-Lou, Shi Yong-Qiang, He Ying-Bo, Li Lian-Sheng, Zhou Hao, Xie Jun, Zhang Hai-Li, Sun Yan. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics. Acta Physica Sinica, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [5] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [6] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [7] Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200021
    [8] Zou Ping, Lv Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
  • Citation:
Metrics
  • Abstract views:  3177
  • PDF Downloads:  1475
  • Cited By: 0
Publishing process
  • Received Date:  28 March 2011
  • Accepted Date:  01 June 2011
  • Published Online:  15 March 2012

Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition

  • 1. Science and Technology on Microsystem Laboratory, State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China;
  • 2. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
Fund Project:  Project supported by the Important National Science and Technology Specific Projects (Grant No. 2011ZX02707), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-YW-23), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61021064), and the National Natural Science Foundation of China (Grant Nos. 60936001, 60876037).

Abstract: Graphene has received great interest because of its peculiar band structure and excellent physical properties. But today, the development of graphene is limited to its size and quality. In this paper, single- and multilayer graphene films were synthesized on copper foils by chemical vapor deposition(CVD) using methane at ambient pressure. Experiment results find the high temperature, low concentration of methane gas, shorter growth time and suitable gas flow are the key to get high-quality and large-scale graphene films. Raman spectra, scanning electron microscope(SEM) and transmission electron microscope(TEM) characterization indicate the graphene films are mostly single-layer, only with rare area having multilayer around copper boundaries. Further electrical tests show the graphene films grown by CVD method represent semiconductor behaviors under low temperature and the sheet resistance of graphene films is decreasing with the external magnetic field increasing.

Reference (25)

Catalog

    /

    返回文章
    返回