搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学气相沉积石墨烯薄膜的洁净转移

张晓波 青芳竹 李雪松

引用本文:
Citation:

化学气相沉积石墨烯薄膜的洁净转移

张晓波, 青芳竹, 李雪松

Clean transfer of chemical vapor deposition graphene film

Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song
PDF
HTML
导出引用
  • 石墨烯因其优异的性能在很多领域具有广阔的应用前景. 目前石墨烯薄膜主要是以铜作为催化基底, 通过化学气相沉积法制备. 这种方法制备的石墨烯薄膜需要被转移到目标基底上进行后续应用, 而转移过程则会对石墨烯造成污染, 进而影响石墨烯的性质及器件的性能. 如何减少或避免污染, 实现石墨烯的洁净转移, 是石墨烯薄膜转移技术研究的重要课题, 也是本综述的主题. 本综述首先简单介绍了石墨烯的转移方法; 进而重点讨论由于转移而引入的各种污染物及其对石墨烯性质的影响, 以及如何抑制污染物的引入或如何将其有效地去除; 最后总结了石墨烯洁净转移所存在的挑战, 展望了未来的研究方向和机遇. 本综述不仅有助于石墨烯薄膜转移技术的研究, 对整个二维材料器件的洁净制备也将有重要参考价值.
    Graphene is believed to have promising applications in many fields because of its unique properties. At present, graphene films are mainly prepared on Cu substrates by chemical vapor deposition. The graphene films prepared in this way need to be transferred to the target substrates for further applications, while the transfer process inevitably induces contamination on graphene, which affects the properties of graphene and the performance of devices. Therefore, how to reduce or avoid contamination and realize the clean transfer of graphene is an important topic for the development of graphene transfer technology, which is the major topic of this review. Here, firstly, the transfer techniques of graphene are briefly reviewed, which can be classified according to different rules. For example, it can be classified as direct transfer, with which graphene is directly stuck to the target substrate, and indirect transfer, with which graphene is indirectly transferred to the target substrate with a carrier film. According to the way of separating graphene and the growth substrate, it can also be classified as dissolving transfer, with which the substrate is dissolved by chemical etchant, and delaminating transfer, with which graphene is delaminated from the substrate. Then the origins of contamination are discussed followed with how contamination affects graphene properties. The main contaminations induced by transfer are ions from the etchant and electrolyte, undissolved metal or metal oxide particles, and organic residues from carrier films. Contaminations have a great influence on the electrical, thermal and optical properties of graphene. Then the up-to-date progress of techniques for clean transfer is reviewed, including modifying the cleaning process or using alternative etchant/electrolyte to remove or suppress metal contamination and annealing graphene or using alternative carrier films (e.g., more dissoluble materials) to remove or suppress organic residues. Finally, the challenges of clean transfer of graphene are summarized, and future research directions and opportunities are prospected. This review not only contributes to the research of graphene film transfer technology, but also has great reference value for the clean fabrication of the whole two-dimensional materials and devices.
      通信作者: 青芳竹, qingfz@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51802036, 51772043)、国家留学基金(批准号: 201708515008)、四川省重点研发项目(批准号: 2018GZ0434)和四川省应用基础研究项目(批准号: 2019YJ0168)资助的课题.
      Corresponding author: Qing Fang-Zhu, qingfz@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51802036, 51772043), the China Scholarship Council (Grant No. 201708515008), the Key Research and Development Program of Sichuan Province, China (Grant No. 2018GZ0434), and the Applied Basic Research Program of Sichuan Province, China (Grant No. 2019YJ0168).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [3]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563Google Scholar

    [4]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [5]

    Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotechnol. 3 270Google Scholar

    [6]

    Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, de Heer W A 2004 J. Phys. Chem. B 108 19912Google Scholar

    [7]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191Google Scholar

    [8]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [9]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [10]

    Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720Google Scholar

    [11]

    Hao Y, Wang L, Liu Y, Chen H, Wang X, Tan C, Nie S, Suk J W, Jiang T, Liang T, Xiao J, Ye W, Dean C R, Yakobson B I, McCarty K F, Kim P, Hone J, Colombo L, Ruoff R S 2016 Nat. Nanotechnol. 11 426Google Scholar

    [12]

    Li X, Colombo L, Ruoff R S 2016 Adv. Mater. 28 6247Google Scholar

    [13]

    Qing F, Shen C, Jia R, Zhan L, Li X 2017 MRS Bull. 42 819Google Scholar

    [14]

    Zhu Y, Ji H, Cheng H M, Ruoff R S 2018 Natl. Sci. Rev. 5 90Google Scholar

    [15]

    Kang J, Shin D, Bae S, Hong B H 2012 Nanoscale 4 5527Google Scholar

    [16]

    Chen Y, Gong X L, Gai J G 2016 Adv. Sci. 3 1500343Google Scholar

    [17]

    Lee H C, Liu W W, Chai S P, Mohamed A R, Aziz A, Khe C S, Hidayah N M S, Hashim U 2017 RSC Adv. 7 15644Google Scholar

    [18]

    Chen M, Haddon R C, Yan R, Bekyarova E 2017 Mater. Horiz. 4 1054Google Scholar

    [19]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [20]

    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927Google Scholar

    [21]

    Juang Z Y, Wu C Y, Lu A Y, Su C Y, Leou K C, Chen F R, Tsai C H 2010 Carbon 48 3169Google Scholar

    [22]

    Yoon T, Shin W C, Kim T Y, Mun J H, Kim T S, Cho B J 2012 Nano Lett. 12 1448Google Scholar

    [23]

    Lock E H, Baraket M, Laskoski M, Mulvaney S P, Lee W K, Sheehan P E, Hines D R, Robinson J T, Tosado J, Fuhrer M S, Hernandez S C, Walton S G 2012 Nano Lett. 12 102Google Scholar

    [24]

    Bajpai R, Roy S, Jain L, Kulshrestha N, Hazra K S, Misra D S 2011 Nanotechnology 22 225606Google Scholar

    [25]

    Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K, Umezu N, Miyahara K, Hayazaki S, Nagai S, Mizuguchi Y, Murakami Y, Hobara D 2013 Appl. Phys. Lett. 102 023112Google Scholar

    [26]

    Liu W, Jackson B L, Zhu J, Miao C Q, Chung C H, Park Y J, Sun K, Woo J, Xie Y H 2010 ACS Nano 4 3927Google Scholar

    [27]

    Lee Y H, Lee J H 2010 Appl. Phys. Lett. 96 083101Google Scholar

    [28]

    Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Goldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar

    [29]

    Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker A R, Liu Z, Peng L M, Richter C A 2011 ACS Nano 5 9144Google Scholar

    [30]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 699Google Scholar

    [31]

    Cherian C T, Giustiniano F, Martin-Fernandez I, Andersen H, Balakrishnan J, Ozyilmaz B 2015 Small 11 189Google Scholar

    [32]

    Pizzocchero F, Jessen B S, Whelan P R, Kostesha N, Lee S, Buron J D, Petrushina I, Larsen M B, Greenwood P, Cha W J, Teo K, Jepsen P U, Hone J, Bøggild P, Booth T J 2015 Carbon 85 397Google Scholar

    [33]

    Krasheninnikov A V, Nieminen R M 2011 Theor. Chem. Acc. 129 625Google Scholar

    [34]

    Miller-Chou B A, Koenig J L 2003 Prog. Polym. Sci. 28 1223Google Scholar

    [35]

    Kim S, Shin S, Kim T, Du H, Song M, Lee C, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352

    [36]

    Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462Google Scholar

    [37]

    Song J, Kam F Y, Png R Q, Seah W L, Zhuo J M, Lim G K, Ho P K, Chua L L 2013 Nat. Nanotechnol. 8 356Google Scholar

    [38]

    Hong S K, Song S M, Sul O, Cho B J 2012 J. Electrochem. Soc. 159 K107Google Scholar

    [39]

    Kim B J, Shrivastava N K, Nasir T, Choi K S, Lee J, Kim H C, Kim K W, Devika M, Lee S H, Jeong B J, Yu H K, Choi J Y 2017 Phys. Status Solidi RRL 11 1700240Google Scholar

    [40]

    Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T, Zhang R, Li C, Kong J, Xu J B, Ruoff R S, Zhu H 2017 Chem. Soc. Rev. 46 4417Google Scholar

    [41]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206Google Scholar

    [42]

    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S, Wallace R M 2011 Appl. Phys. Lett. 99 122108Google Scholar

    [43]

    Ahn Y, Kim H, Kim Y H, Yi Y, Kim S I 2013 Appl. Phys. Lett. 102 091602Google Scholar

    [44]

    Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar

    [45]

    Lagatsky A A, Sun Z, Kulmala T S, Sundaram R S, Milana S, Torrisi F, Antipov O L, Lee Y, Ahn J H, Brown C T A, Sibbett W, Ferrari A C 2013 Appl. Phys. Lett. 102 013113Google Scholar

    [46]

    Wang D Y, Huang I S, Ho P H, Li S S, Yeh Y C, Wang D W, Chen W L, Lee Y Y, Chang Y M, Chen C C, Liang C T, Chen C W 2013 Adv. Mater. 25 4521Google Scholar

    [47]

    Kim Y, Kim H, Kim T Y, Rhyu S H, Choi D S, Park W K, Yang C M, Yoon D H, Yang W S 2015 Carbon 81 458Google Scholar

    [48]

    Lavin-Lopez M P, Valverde J L, Garrido A, Sanchez-Silva L, Martinez P, Romero-Izquierdo A 2014 Chem. Phys. Lett. 614 89Google Scholar

    [49]

    Gorantla S, Bachmatiuk A, Hwang J, Alsalman H A, Kwak J Y, Seyller T, Eckert J, Spencer M G, Rummeli M H 2014 Nanoscale 6 889Google Scholar

    [50]

    Gupta P, Dongare P D, Grover S, Dubey S, Mamgain H, Bhattacharya A, Deshmukh M M 2014 Sci. Rep. 4 3882

    [51]

    Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K, Chiu P W 2011 ACS Nano 5 2362Google Scholar

    [52]

    Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y 2011 Nano Lett. 11 767Google Scholar

    [53]

    Dan Y, Lu Y, Kybert N J, Luo Z, Johnson A T 2009 Nano Lett. 9 1472Google Scholar

    [54]

    Booth T J, Blake P, Nair R R, Jiang D, Hill E W, Bangert U, Bleloch A, Gass M, Novoselov K S, Katsnelson M I, Geim A K 2008 Nano Lett. 8 2442Google Scholar

    [55]

    Elias D C, Nair R R, Mohiuddin T M, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610Google Scholar

    [56]

    Wang X, Dolocan A, Chou H, Tao L, Dick A, Akinwande D, Willson C G 2017 Chem. Mater. 29 2033Google Scholar

    [57]

    Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K, Chiu P W 2012 Nano Lett. 12 414Google Scholar

    [58]

    Suhail A, Islam K, Li B, Jenkins D, Pan G 2017 Appl. Phys. Lett. 110 183103Google Scholar

    [59]

    Kim S J, Choi T, Lee B, Lee S, Choi K, Park J B, Yoo J M, Choi Y S, Ryu J, Kim P, Hone J, Hong B H 2015 Nano Lett. 15 3236Google Scholar

    [60]

    Su Y, Han H L, Cai Q, Wu Q, Xie M, Chen D, Geng B, Zhang Y, Wang F, Shen Y R, Tian C 2015 Nano Lett. 15 6501Google Scholar

    [61]

    Kim H H, Kang B, Suk J W, Li N, Kim K S, Ruoff R S, Lee W H, Cho K 2015 ACS Nano 9 4726Google Scholar

    [62]

    Brajpuriya R, Dikonimos T, Buonocore F, Lisi N 2015 International Conference on the Recent Trends in Materials and Devices India December 15−17, 2015 p325

    [63]

    Chen M, Li G, Li W, Stekovic D, Arkook B, Itkis M E, Pekker A, Bekyarova E, Haddon R C 2016 Carbon 110 286Google Scholar

    [64]

    Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng H M, Ren W 2017 Nat. Commun. 8 14560Google Scholar

    [65]

    Chen M, Stekovic D, Li W, Arkook B, Haddon R C, Bekyarova E 2017 Nanotechnology 28 255701Google Scholar

    [66]

    Choi J, Kim H, Park J, Iqbal M W, Iqbal M Z, Eom J, Jung J 2014 Current Appl. Phys. 14 1045

    [67]

    Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J 2014 J. Mater. Chem. C 2 201Google Scholar

    [68]

    Chen X D, Liu Z B, Zheng C Y, Xing F, Yan X Q, Chen Y, Tian J G 2013 Carbon 56 271Google Scholar

    [69]

    Lin W H, Chen T H, Chang J K, Taur J I, Lo Y Y, Lee W L, Chang C S, Su W B, Wu C I 2014 ACS Nano 8 1784Google Scholar

    [70]

    Pasternak I, Krajewska A, Grodecki K, Jozwik-Biala I, Sobczak K, Strupinski W 2014 AIP Adv. 4 097133Google Scholar

    [71]

    Wang B, Huang M, Tao L, Lee S H, Jang A R, Li B W, Shin H S, Akinwande D, Ruoff R S 2016 ACS Nano 10 1404Google Scholar

    [72]

    Zhang G, Guell A G, Kirkman P M, Lazenby R A, Miller T S, Unwin P R 2016 ACS Appl. Mat. Interfaces 8 8008Google Scholar

    [73]

    Qing F, Hou Y, Stehle R, Li X 2019 APL Mater. 7 020903Google Scholar

  • 图 1  石墨烯直接转移与间接转移示意图

    Fig. 1.  Schematic of direct and indirect transfer of graphene

    图 2  各种转移方法示意图 (a) “卷对卷”转移[19]; (b)电化学分离转移[20]; (c)机械剥离转移[22]; (d)溶解基底的直接转移[25]

    Fig. 2.  Schematics of various transfer methods: (a) “R2R” transfer[19]; (b) electrochemical delamination transfer[20]; (c) mechanical delamination transfer[22]; (d) direct transfer by dissolving the substrate[25].

    图 3  不同平均分子量PMMA转移的石墨烯的AFM图和归一化高度分布图[35], 其中对应PMMA的平均分子量为: (a), (e) 996000; (b), (f) 350000; (c), (g) 35000; (d), (h) 15000; AFM图像上方的曲线是AFM图像中白色斜线的线扫描, AFM图像尺寸为5 μm × 5 μm

    Fig. 3.  AFM images and normalized height distribution profiles of transferred graphene using PMMA with different average molecular weight: (a), (e) 996000; (b), (f) 350000; (c), (g) 35000; (d), (h) 15000[35]. The curves above each AFM image represent the line profile of the white slanting line in the images. The size of AFM surface image is 5 μm × 5 μm.

    图 4  石墨烯与聚合物的相互作用力示意图[40] (a) 范德瓦耳斯力; (b) $ {\text{π}}$$ {\text{π}}$键; (c)静电力; (d)化学键

    Fig. 4.  The interactions between polymers and graphene[40]: (a) van der Waals force; (b) $ {\text{π}}$$ {\text{π}}$ interactions; (c) electrostatic interactions; (d) chemical bonding.

    图 5  结合硅晶圆清洗技术的间接转移[29] (a)采用改进的石墨烯清洗方法的转移流程; (b), (c)传统转移和(d), (e)改进的石墨烯清洗转移的光学图像和扫描电子显微镜图像; (b)和(c)中金属微粒残留用蓝色圆圈标记, 小破洞用黄色圆圈标记, 多层石墨烯区域(对比度较暗)用箭头标记; (e)中箭头标记的窄的黑色线条为褶皱

    Fig. 5.  Indirect graphene transfer with “modified RCA clean”[29]: (a) Transfer process flow; optical microscopy images and scanning electron microscopy images of (b), (c) traditional transferred graphene film and (d), (e) modified RCA cleaning transferred graphene film. In (b) and (c) the metal residues and the small holes are marked with blue circles and yellow circles, respectively, and the graphene adlayers (with darker contrast) are marked with arrows. The arrow in (e) points to the wrinkles (the dark lines).

    图 6  使用NH4OH+H2O2转移石墨烯流程图[49]

    Fig. 6.  Schematic of graphene transfer with NH4OH and H2O2[49]

    图 7  热去离子水浸湿-剥离石墨烯转移流程图[50]

    Fig. 7.  Schematic showing the steps of graphene transfer with hot deionized (DI) water[50].

    图 8  石墨烯在空气和H2/Ar 200 ℃退火2 h后的TEM图像[57] (a), (b)显示表面清洁度的细节, 下面对应面板中复制的着色的图像用以区分分解温度不同的PMMA残留物, 没有PMMA的区域在彩色图像中显示为灰色; 左下角的图解释了相应的颜色, 其中蓝色、红色和黄色分别代表PMMA-G, PMMA-A和Cu纳米颗粒; (c)图(b)中所示区域的TEM高分辨图, 显示仍有PMMA残留物

    Fig. 8.  TEM images of graphene after air and H2/Ar two-step annealing at 250 ℃ for 2 h[57]. Panels (a) and (b) show the details of surface cleanliness. The same images are duplicated and colored in the lower panels to distinguish the PMMA residues that decomposed differently. The areas free of PMMA are shown in gray in the colored images. The bottom-left image interprets the meaning of different colors, in which blue, red, and yellow stand for PMMA-G, PMMA-A, and Cu nanoparticles, respectively. (c) Atomic resolution of graphene clean surface with PMMA residue shown piecewise at the bottom corner after annealing.

    图 9  用于石墨烯间接转移的中介层材料

    Fig. 9.  Carrier layer materials for indirect transfer of graphene.

    图 10  TRT, PMMA, PET/Silicone作为中介层转移结果的对比[68] (a)−(c)光学显微图像; (d)−(f)三维AFM图像

    Fig. 10.  (a)−(c) Optical and (d)−(f) three-dimensional AFM images showing the surface morphologies of the monolayer graphene films transferred onto SiO2/Si substrates by TRT, PMMA and PET/silicone, respectively[68].

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [3]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563Google Scholar

    [4]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [5]

    Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotechnol. 3 270Google Scholar

    [6]

    Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, de Heer W A 2004 J. Phys. Chem. B 108 19912Google Scholar

    [7]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191Google Scholar

    [8]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [9]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [10]

    Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720Google Scholar

    [11]

    Hao Y, Wang L, Liu Y, Chen H, Wang X, Tan C, Nie S, Suk J W, Jiang T, Liang T, Xiao J, Ye W, Dean C R, Yakobson B I, McCarty K F, Kim P, Hone J, Colombo L, Ruoff R S 2016 Nat. Nanotechnol. 11 426Google Scholar

    [12]

    Li X, Colombo L, Ruoff R S 2016 Adv. Mater. 28 6247Google Scholar

    [13]

    Qing F, Shen C, Jia R, Zhan L, Li X 2017 MRS Bull. 42 819Google Scholar

    [14]

    Zhu Y, Ji H, Cheng H M, Ruoff R S 2018 Natl. Sci. Rev. 5 90Google Scholar

    [15]

    Kang J, Shin D, Bae S, Hong B H 2012 Nanoscale 4 5527Google Scholar

    [16]

    Chen Y, Gong X L, Gai J G 2016 Adv. Sci. 3 1500343Google Scholar

    [17]

    Lee H C, Liu W W, Chai S P, Mohamed A R, Aziz A, Khe C S, Hidayah N M S, Hashim U 2017 RSC Adv. 7 15644Google Scholar

    [18]

    Chen M, Haddon R C, Yan R, Bekyarova E 2017 Mater. Horiz. 4 1054Google Scholar

    [19]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [20]

    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927Google Scholar

    [21]

    Juang Z Y, Wu C Y, Lu A Y, Su C Y, Leou K C, Chen F R, Tsai C H 2010 Carbon 48 3169Google Scholar

    [22]

    Yoon T, Shin W C, Kim T Y, Mun J H, Kim T S, Cho B J 2012 Nano Lett. 12 1448Google Scholar

    [23]

    Lock E H, Baraket M, Laskoski M, Mulvaney S P, Lee W K, Sheehan P E, Hines D R, Robinson J T, Tosado J, Fuhrer M S, Hernandez S C, Walton S G 2012 Nano Lett. 12 102Google Scholar

    [24]

    Bajpai R, Roy S, Jain L, Kulshrestha N, Hazra K S, Misra D S 2011 Nanotechnology 22 225606Google Scholar

    [25]

    Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K, Umezu N, Miyahara K, Hayazaki S, Nagai S, Mizuguchi Y, Murakami Y, Hobara D 2013 Appl. Phys. Lett. 102 023112Google Scholar

    [26]

    Liu W, Jackson B L, Zhu J, Miao C Q, Chung C H, Park Y J, Sun K, Woo J, Xie Y H 2010 ACS Nano 4 3927Google Scholar

    [27]

    Lee Y H, Lee J H 2010 Appl. Phys. Lett. 96 083101Google Scholar

    [28]

    Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Goldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar

    [29]

    Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker A R, Liu Z, Peng L M, Richter C A 2011 ACS Nano 5 9144Google Scholar

    [30]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 699Google Scholar

    [31]

    Cherian C T, Giustiniano F, Martin-Fernandez I, Andersen H, Balakrishnan J, Ozyilmaz B 2015 Small 11 189Google Scholar

    [32]

    Pizzocchero F, Jessen B S, Whelan P R, Kostesha N, Lee S, Buron J D, Petrushina I, Larsen M B, Greenwood P, Cha W J, Teo K, Jepsen P U, Hone J, Bøggild P, Booth T J 2015 Carbon 85 397Google Scholar

    [33]

    Krasheninnikov A V, Nieminen R M 2011 Theor. Chem. Acc. 129 625Google Scholar

    [34]

    Miller-Chou B A, Koenig J L 2003 Prog. Polym. Sci. 28 1223Google Scholar

    [35]

    Kim S, Shin S, Kim T, Du H, Song M, Lee C, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352

    [36]

    Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462Google Scholar

    [37]

    Song J, Kam F Y, Png R Q, Seah W L, Zhuo J M, Lim G K, Ho P K, Chua L L 2013 Nat. Nanotechnol. 8 356Google Scholar

    [38]

    Hong S K, Song S M, Sul O, Cho B J 2012 J. Electrochem. Soc. 159 K107Google Scholar

    [39]

    Kim B J, Shrivastava N K, Nasir T, Choi K S, Lee J, Kim H C, Kim K W, Devika M, Lee S H, Jeong B J, Yu H K, Choi J Y 2017 Phys. Status Solidi RRL 11 1700240Google Scholar

    [40]

    Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T, Zhang R, Li C, Kong J, Xu J B, Ruoff R S, Zhu H 2017 Chem. Soc. Rev. 46 4417Google Scholar

    [41]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206Google Scholar

    [42]

    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S, Wallace R M 2011 Appl. Phys. Lett. 99 122108Google Scholar

    [43]

    Ahn Y, Kim H, Kim Y H, Yi Y, Kim S I 2013 Appl. Phys. Lett. 102 091602Google Scholar

    [44]

    Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar

    [45]

    Lagatsky A A, Sun Z, Kulmala T S, Sundaram R S, Milana S, Torrisi F, Antipov O L, Lee Y, Ahn J H, Brown C T A, Sibbett W, Ferrari A C 2013 Appl. Phys. Lett. 102 013113Google Scholar

    [46]

    Wang D Y, Huang I S, Ho P H, Li S S, Yeh Y C, Wang D W, Chen W L, Lee Y Y, Chang Y M, Chen C C, Liang C T, Chen C W 2013 Adv. Mater. 25 4521Google Scholar

    [47]

    Kim Y, Kim H, Kim T Y, Rhyu S H, Choi D S, Park W K, Yang C M, Yoon D H, Yang W S 2015 Carbon 81 458Google Scholar

    [48]

    Lavin-Lopez M P, Valverde J L, Garrido A, Sanchez-Silva L, Martinez P, Romero-Izquierdo A 2014 Chem. Phys. Lett. 614 89Google Scholar

    [49]

    Gorantla S, Bachmatiuk A, Hwang J, Alsalman H A, Kwak J Y, Seyller T, Eckert J, Spencer M G, Rummeli M H 2014 Nanoscale 6 889Google Scholar

    [50]

    Gupta P, Dongare P D, Grover S, Dubey S, Mamgain H, Bhattacharya A, Deshmukh M M 2014 Sci. Rep. 4 3882

    [51]

    Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K, Chiu P W 2011 ACS Nano 5 2362Google Scholar

    [52]

    Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y 2011 Nano Lett. 11 767Google Scholar

    [53]

    Dan Y, Lu Y, Kybert N J, Luo Z, Johnson A T 2009 Nano Lett. 9 1472Google Scholar

    [54]

    Booth T J, Blake P, Nair R R, Jiang D, Hill E W, Bangert U, Bleloch A, Gass M, Novoselov K S, Katsnelson M I, Geim A K 2008 Nano Lett. 8 2442Google Scholar

    [55]

    Elias D C, Nair R R, Mohiuddin T M, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610Google Scholar

    [56]

    Wang X, Dolocan A, Chou H, Tao L, Dick A, Akinwande D, Willson C G 2017 Chem. Mater. 29 2033Google Scholar

    [57]

    Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K, Chiu P W 2012 Nano Lett. 12 414Google Scholar

    [58]

    Suhail A, Islam K, Li B, Jenkins D, Pan G 2017 Appl. Phys. Lett. 110 183103Google Scholar

    [59]

    Kim S J, Choi T, Lee B, Lee S, Choi K, Park J B, Yoo J M, Choi Y S, Ryu J, Kim P, Hone J, Hong B H 2015 Nano Lett. 15 3236Google Scholar

    [60]

    Su Y, Han H L, Cai Q, Wu Q, Xie M, Chen D, Geng B, Zhang Y, Wang F, Shen Y R, Tian C 2015 Nano Lett. 15 6501Google Scholar

    [61]

    Kim H H, Kang B, Suk J W, Li N, Kim K S, Ruoff R S, Lee W H, Cho K 2015 ACS Nano 9 4726Google Scholar

    [62]

    Brajpuriya R, Dikonimos T, Buonocore F, Lisi N 2015 International Conference on the Recent Trends in Materials and Devices India December 15−17, 2015 p325

    [63]

    Chen M, Li G, Li W, Stekovic D, Arkook B, Itkis M E, Pekker A, Bekyarova E, Haddon R C 2016 Carbon 110 286Google Scholar

    [64]

    Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng H M, Ren W 2017 Nat. Commun. 8 14560Google Scholar

    [65]

    Chen M, Stekovic D, Li W, Arkook B, Haddon R C, Bekyarova E 2017 Nanotechnology 28 255701Google Scholar

    [66]

    Choi J, Kim H, Park J, Iqbal M W, Iqbal M Z, Eom J, Jung J 2014 Current Appl. Phys. 14 1045

    [67]

    Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J 2014 J. Mater. Chem. C 2 201Google Scholar

    [68]

    Chen X D, Liu Z B, Zheng C Y, Xing F, Yan X Q, Chen Y, Tian J G 2013 Carbon 56 271Google Scholar

    [69]

    Lin W H, Chen T H, Chang J K, Taur J I, Lo Y Y, Lee W L, Chang C S, Su W B, Wu C I 2014 ACS Nano 8 1784Google Scholar

    [70]

    Pasternak I, Krajewska A, Grodecki K, Jozwik-Biala I, Sobczak K, Strupinski W 2014 AIP Adv. 4 097133Google Scholar

    [71]

    Wang B, Huang M, Tao L, Lee S H, Jang A R, Li B W, Shin H S, Akinwande D, Ruoff R S 2016 ACS Nano 10 1404Google Scholar

    [72]

    Zhang G, Guell A G, Kirkman P M, Lazenby R A, Miller T S, Unwin P R 2016 ACS Appl. Mat. Interfaces 8 8008Google Scholar

    [73]

    Qing F, Hou Y, Stehle R, Li X 2019 APL Mater. 7 020903Google Scholar

  • [1] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究. 物理学报, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [3] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [4] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [5] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [6] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [7] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [8] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [9] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨. 物理学报, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [10] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展. 物理学报, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [11] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [12] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [13] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [14] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [15] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [16] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [17] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列. 物理学报, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [18] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [19] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究. 物理学报, 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  17966
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-01
  • 修回日期:  2019-03-27
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回