Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene

Liu Gui-Li Yang Zhong-Hua

First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene

Liu Gui-Li, Yang Zhong-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the first-principles method of density functional theory, a systematic research is conducted on the electron mechanism of the effect of deformation, electric field action and combined action on the electrical properties of graphene. The research results show that the energy gap and density of states of graphene are both 0 at the Fermi level, indicating semi-metallic character, which implies that the calculation model and the parameter setting are reasonable in this paper. After some deformation actions, such as shear, stretch, torsion and bending deformation on the graphene, it is found that shear and torsion exert an obvious effect on opening the energy gap of graphene, but the effects of tensile and bending deformation on the energy gap of graphene are negligible. Therefore, shear deformation and torsion deformation are a preferred alternative to controlling the energy gap of graphene. By adding the electric field to the graphene in different directions, it is found that the , and direction electric fields which are parallel to the plane of graphene exert a strong effect on opening the energy gap of graphene, but the effect of direction electric field which is perpendicular to the plane of graphene is weak. Especially, the direction electric field has the strongest effect on opening the energy gap of the graphene because the positive value of the population of graphene C–C atoms in the direction is relatively large and bond energy is high while the negative value is small and the antibond energy is low. In order to investigate the influence of electric field strength on energy gap of graphene, the electric field strength is increased linearly from 0.1 eV/Å/e to 0.5 eV/Å/e. It can be observed that the energy gap of graphene increases in turn, and shows a linear growth. Under the action of 0.1 eV/Å/e electric field strength, shear deformation, stretch deformation, torsion deformation and bending deformation take place on the grapheme. It is found that under the combined action of deformation and electric field, the electric field improves the effect of deformation on the energy gap, but the effect is not so good asunder the superposition of two fields.
      Corresponding author: Yang Zhong-Hua, 331808017@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50671069)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich W, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Ney A, Papakonstantinou P, Kumar A, Shang N G, Peng N 2011 Appl. Phys. Lett. 99 102504

    [5]

    Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K, Grigorieva I V 2012 Nat. Phys. 8 199

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P T 2010 Appl. Phys. Lett. 97 193305

    [8]

    Sun L F, Fang C, Liang T X 2013 Chin. Phys. Lett. 30 047201

    [9]

    Zhou S, Liu G, Fan D 2017 Phys. B: Condens. Matter 506 156

    [10]

    Prezzi D, Varsano D, Ruini A, Marini A, Molinari E 2008 Phys. Rev. B 77 041404

    [11]

    Liao W H 2010 Ph. D. Dissertation (Hunan: Hunan Normal University) (in Chinese) [廖文虎 2010 博士学位论文 (湖南: 湖南师范大学)]

    [12]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦勇, 童国平 2009 物理学报 58 1931]

    [13]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [14]

    Yu J, Zhang X X, Ji J S, Huang D, Xi W 2015 Chin. J. Nonferrous Met. 25 3452

    [15]

    Park J S, Choi H J 2015 Phys. Rev. B: Condens. Matter Mat. Phys. 92 045402

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [17]

    Vanderbilt D 1990 Phys. Rev. B: Condens. Matter 41 7892

    [18]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 135 188

    [19]

    Shanno D F 1970 Math. Comput. 24 647

    [20]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich W, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Ney A, Papakonstantinou P, Kumar A, Shang N G, Peng N 2011 Appl. Phys. Lett. 99 102504

    [5]

    Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K, Grigorieva I V 2012 Nat. Phys. 8 199

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P T 2010 Appl. Phys. Lett. 97 193305

    [8]

    Sun L F, Fang C, Liang T X 2013 Chin. Phys. Lett. 30 047201

    [9]

    Zhou S, Liu G, Fan D 2017 Phys. B: Condens. Matter 506 156

    [10]

    Prezzi D, Varsano D, Ruini A, Marini A, Molinari E 2008 Phys. Rev. B 77 041404

    [11]

    Liao W H 2010 Ph. D. Dissertation (Hunan: Hunan Normal University) (in Chinese) [廖文虎 2010 博士学位论文 (湖南: 湖南师范大学)]

    [12]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦勇, 童国平 2009 物理学报 58 1931]

    [13]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [14]

    Yu J, Zhang X X, Ji J S, Huang D, Xi W 2015 Chin. J. Nonferrous Met. 25 3452

    [15]

    Park J S, Choi H J 2015 Phys. Rev. B: Condens. Matter Mat. Phys. 92 045402

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [17]

    Vanderbilt D 1990 Phys. Rev. B: Condens. Matter 41 7892

    [18]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 135 188

    [19]

    Shanno D F 1970 Math. Comput. 24 647

    [20]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

  • [1] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [2] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [3] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [4] Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Characteristics of interaction between single-layer graphene on copper substrate and groove. Acta Physica Sinica, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [5] Zhang Qiu-Hui, Han Jing-Hua, Feng Guo-Ying, Xu Qi-Xing, Ding Li-Zhong, Lu Xiao-Xiang. Raman spectrum research on graphene modification under high intensity laser. Acta Physica Sinica, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [6] Chen Dong-Hai, Yang Mou, Duan Hou-Jian, Wang Rui-Qiang. Electronic transport properties of graphene pn junctions with spin-orbit coupling. Acta Physica Sinica, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [7] Zhu Zheng-He, Wang Fan-Hou, Min Jun, Huang Duo-Hui. Study on structure characteristics of MgO molecule under external electric field. Acta Physica Sinica, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [8] He Jian-Yong, Long Zheng-Wen, Long Chao-Yun, Cai Shao-Hong. Molecular structure and electronic spectrum of CaS under electric fields. Acta Physica Sinica, 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [9] Han Tong-Wei, Li Pan-Pan. Investigation on the large tensile deformation and mechanical behaviors of graphene kirigami. Acta Physica Sinica, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [10] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [11] Dong Ruo-Yu, Cao Peng, Cao Gui-Xing, Hu Guo-Jie, Cao Bing-Yang. DC electric field induced orientation of a graphene in water. Acta Physica Sinica, 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [12] Zhou Li, Wei Yuan, Huang Zhi-Xiang, Wu Xian-Liang. Study on the electromagnetic properties of thin-film solar cell grown with graphene using FDFD method. Acta Physica Sinica, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [13] Zhang Hui-Zhen, Li Jin-Tao, Lü Wen-Gang, Yang Hai-Fang, Tang Cheng-Chun, Gu Chang-Zhi, Li Jun-Jie. Fabrication of graphene nanostructure and bandgap tuning. Acta Physica Sinica, 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [14] Liu Xue-Wen, Zhu Chong-Yang, Dong Hui, Xu Feng, Sun Li-Tao. Preparation of iron diselenide/reduced graphene oxide composite and its application in dyesensitized solar cells. Acta Physica Sinica, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [15] Gao Shuang-Hong, Ren Zhao-Yu, Guo Ping, Zheng Ji-Ming, Du Gong-He, Wan Li-Juan, Zheng Lin-Lin. Magnetic properties and excited states of thegraphene quantum dots. Acta Physica Sinica, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [16] Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun. First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots. Acta Physica Sinica, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [17] Zheng Shu-Wen, Fan Guang-Han, Zhang Tao, Su Chen, Song Jing-Jing, Ding Bin-Bin. First-principles study on the energy bandgap bowing parameter of wurtzite BexZn1-xO. Acta Physica Sinica, 2013, 62(3): 037102. doi: 10.7498/aps.62.037102
    [18] Yang Dong-Sheng, Wu Bai-Mei, Li Bo, Zheng Wei-Hua, Li Shi-Yan, Fan Rong, Chen Xian-Hui, Cao Lie-Zhao. Thermal conductivity of two-energy-gap superconductor MgB2. Acta Physica Sinica, 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [19] Liu Yi-Xing, Yu Ya-Bin, Zhang Li, Quan Jun. Study of the spread of the energy gap in nanostructure systems. Acta Physica Sinica, 2008, 57(11): 6751-6757. doi: 10.7498/aps.57.6751
    [20] . Acta Physica Sinica, 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
  • Citation:
Metrics
  • Abstract views:  402
  • PDF Downloads:  173
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2017
  • Accepted Date:  19 January 2018
  • Published Online:  05 April 2018

First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene

    Corresponding author: Yang Zhong-Hua, 331808017@qq.com
  • 1. Department of Mechanics, Shenyang University of Technology, Shenyang 110870, China;
  • 2. Department of Building Environment and Energy Engineering, Shenyang University of Technology, Shenyang 110870, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 50671069)

Abstract: Based on the first-principles method of density functional theory, a systematic research is conducted on the electron mechanism of the effect of deformation, electric field action and combined action on the electrical properties of graphene. The research results show that the energy gap and density of states of graphene are both 0 at the Fermi level, indicating semi-metallic character, which implies that the calculation model and the parameter setting are reasonable in this paper. After some deformation actions, such as shear, stretch, torsion and bending deformation on the graphene, it is found that shear and torsion exert an obvious effect on opening the energy gap of graphene, but the effects of tensile and bending deformation on the energy gap of graphene are negligible. Therefore, shear deformation and torsion deformation are a preferred alternative to controlling the energy gap of graphene. By adding the electric field to the graphene in different directions, it is found that the , and direction electric fields which are parallel to the plane of graphene exert a strong effect on opening the energy gap of graphene, but the effect of direction electric field which is perpendicular to the plane of graphene is weak. Especially, the direction electric field has the strongest effect on opening the energy gap of the graphene because the positive value of the population of graphene C–C atoms in the direction is relatively large and bond energy is high while the negative value is small and the antibond energy is low. In order to investigate the influence of electric field strength on energy gap of graphene, the electric field strength is increased linearly from 0.1 eV/Å/e to 0.5 eV/Å/e. It can be observed that the energy gap of graphene increases in turn, and shows a linear growth. Under the action of 0.1 eV/Å/e electric field strength, shear deformation, stretch deformation, torsion deformation and bending deformation take place on the grapheme. It is found that under the combined action of deformation and electric field, the electric field improves the effect of deformation on the energy gap, but the effect is not so good asunder the superposition of two fields.

Reference (20)

Catalog

    /

    返回文章
    返回