搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯莫尔超晶格

卢晓波 张广宇

石墨烯莫尔超晶格

卢晓波, 张广宇
PDF
导出引用
导出核心图
  • 石墨烯莫尔超晶格来源于六方氮化硼衬底对石墨烯的二维周期势调控. 由于这种外加的周期势对石墨烯能带具有显著的调制作用, 近年来引发了人们广泛的关注. 利用氮化硼衬底上外延的单晶石墨烯薄膜, 我们系统研究了基底调制下的莫尔超晶格以及相关的物理特性. 首先, 我们在电子端和空穴端都观测到了超晶格狄拉克点, 并且超晶格狄拉克点同本征狄拉克点类似, 都表现出绝缘体的特性. 在低温强磁场下, 可以观测到到单层石墨烯和双层石墨烯的量子霍尔效应. 并且, 从朗道扇形图中, 可以清晰的看到磁场下形成的超晶格朗道能级. 此外, 利用红外光谱的方法研究了强磁场下石墨烯超晶格体系不同朗道能级之间的跃迁, 发现这种跃迁满足有质量狄拉克费米子的行为, 对应38 meV的本征能隙. 在此基础上, 我们在380 meV位置发现一个同超晶格能量对应的光电导峰. 通过利用旋量势中三个不同的势分量对光电导峰进行拟合, 发现赝自旋杂化势起主导作用. 进一步研究表明赝自旋杂化势强度随载流子浓度的增大显著降低, 表明电子-电子相互作用引起的旋量势的重构.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2013CB934500, 2012CB921302)、国家自然科学基金(批准号: 91223204, 61325021)和中国科学院战略性先导科技专项(B类)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Nati. Acad. Sci. 102 10451

    [5]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [6]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Novoselov K S, McCann E, Morozov S V, Fal’ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F, Geim A K 2006 Nat. Phys. 2 177

    [8]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [9]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337

    [10]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007

    [11]

    Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [12]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427

    [13]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [14]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynskiet M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I, Geim A K 2013 Nature 497 594

    [15]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382

    [16]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y G, Zhang Y B, Zhang G Y 2013 Nat. Mater. 12 792

    [17]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [18]

    Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J 2010 Nat. Nanotechnol. 5 722

    [19]

    Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014

    [20]

    Yang R, Shi Z, Zhang L, Shi D, Zhang G 2011 Nano Lett. 11 4083

    [21]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [22]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [23]

    Chen Z G, Shi Z, Yang W, Lu X, Lai Y, Yan H, Wang F, Zhang G, Li Z 2014 Nat. Commun. 5 4461

    [24]

    Chen X, Wallbank J R, Patel A A, Mucha-Kruczyński M, McCann E, Fal’ko V I 2014 Phys. l Rev. B 89 075401

    [25]

    Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P, Stormer H L 2007 Phys. Rev. Lett. 98 197403

    [26]

    Sadowski M L, Martinez G, Potemski M 2006 Phys. Rev. Lett. 97 266405

    [27]

    Wallbank J R, Patel A A, Mucha-Kruczyński M, Geim AK, Fal’ko V I 2013 Phys. Rev. B 87 245408

    [28]

    Kindermann M, Uchoa B, Miller D L 2012 Phys. Rev. B 86 115415

    [29]

    Abergel D S L, Wallbank J R, Chen X, Mucha-Kruczyński M, Fal’ko V I 2013 New J. Phys. 15 123009

    [30]

    Shi Z, Jin C, Yang W, Ju L, Horng J, Lu X, Bechtel H A, Martin M C, Fu D, Wu J, Watanabe K, Taniguchi T, Zhang Y B, Bai X D, Wang E G, Zhang G Y, Wang F 2014 Nat. Phys. 10 743

    [31]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [32]

    Horng J, Chen C F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R, Wang F 2011 Phys. Rev. B 83 165113

    [33]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nat. Phys. 4 532

    [34]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T 2008 Science 320 1308

    [35]

    Hwang E H, Das S S 2007 Phys. Rev. B 75 205418

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Nati. Acad. Sci. 102 10451

    [5]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [6]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Novoselov K S, McCann E, Morozov S V, Fal’ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F, Geim A K 2006 Nat. Phys. 2 177

    [8]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [9]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337

    [10]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007

    [11]

    Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [12]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427

    [13]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [14]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynskiet M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I, Geim A K 2013 Nature 497 594

    [15]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382

    [16]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y G, Zhang Y B, Zhang G Y 2013 Nat. Mater. 12 792

    [17]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [18]

    Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J 2010 Nat. Nanotechnol. 5 722

    [19]

    Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014

    [20]

    Yang R, Shi Z, Zhang L, Shi D, Zhang G 2011 Nano Lett. 11 4083

    [21]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [22]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [23]

    Chen Z G, Shi Z, Yang W, Lu X, Lai Y, Yan H, Wang F, Zhang G, Li Z 2014 Nat. Commun. 5 4461

    [24]

    Chen X, Wallbank J R, Patel A A, Mucha-Kruczyński M, McCann E, Fal’ko V I 2014 Phys. l Rev. B 89 075401

    [25]

    Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P, Stormer H L 2007 Phys. Rev. Lett. 98 197403

    [26]

    Sadowski M L, Martinez G, Potemski M 2006 Phys. Rev. Lett. 97 266405

    [27]

    Wallbank J R, Patel A A, Mucha-Kruczyński M, Geim AK, Fal’ko V I 2013 Phys. Rev. B 87 245408

    [28]

    Kindermann M, Uchoa B, Miller D L 2012 Phys. Rev. B 86 115415

    [29]

    Abergel D S L, Wallbank J R, Chen X, Mucha-Kruczyński M, Fal’ko V I 2013 New J. Phys. 15 123009

    [30]

    Shi Z, Jin C, Yang W, Ju L, Horng J, Lu X, Bechtel H A, Martin M C, Fu D, Wu J, Watanabe K, Taniguchi T, Zhang Y B, Bai X D, Wang E G, Zhang G Y, Wang F 2014 Nat. Phys. 10 743

    [31]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [32]

    Horng J, Chen C F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R, Wang F 2011 Phys. Rev. B 83 165113

    [33]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nat. Phys. 4 532

    [34]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T 2008 Science 320 1308

    [35]

    Hwang E H, Das S S 2007 Phys. Rev. B 75 205418

  • [1] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [2] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算. 物理学报, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [3] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [4] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [5] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性. 物理学报, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [6] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性. 物理学报, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [7] 张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰. 石墨烯纳米结构的制备及带隙调控研究. 物理学报, 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [8] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [9] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [10] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [11] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [12] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [13] 王一鹤, 张志旺, 程营, 刘晓峻. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输. 物理学报, 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [14] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [15] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用. 物理学报, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [16] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质. 物理学报, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [17] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [18] 张源, 罗山梦黛, 陈晨, 李美亚. 石墨烯与复合纳米结构SiO2@Au对染料敏化太阳能电池性能的协同优化. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191722
    [19]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [20] 郑树文, 范广涵, 张涛, 苏晨, 宋晶晶, 丁彬彬. 纤锌矿BexZn1-xO合金能隙弯曲系数的第一原理研究. 物理学报, 2013, 62(3): 037102. doi: 10.7498/aps.62.037102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1801
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-02-05
  • 刊出日期:  2015-04-05

石墨烯莫尔超晶格

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190;
  • 2. 量子物质科学协同创新中心, 北京 100190
    基金项目: 

    国家重点基础研究发展计划(973计划)(批准号: 2013CB934500, 2012CB921302)、国家自然科学基金(批准号: 91223204, 61325021)和中国科学院战略性先导科技专项(B类)资助的课题.

摘要: 石墨烯莫尔超晶格来源于六方氮化硼衬底对石墨烯的二维周期势调控. 由于这种外加的周期势对石墨烯能带具有显著的调制作用, 近年来引发了人们广泛的关注. 利用氮化硼衬底上外延的单晶石墨烯薄膜, 我们系统研究了基底调制下的莫尔超晶格以及相关的物理特性. 首先, 我们在电子端和空穴端都观测到了超晶格狄拉克点, 并且超晶格狄拉克点同本征狄拉克点类似, 都表现出绝缘体的特性. 在低温强磁场下, 可以观测到到单层石墨烯和双层石墨烯的量子霍尔效应. 并且, 从朗道扇形图中, 可以清晰的看到磁场下形成的超晶格朗道能级. 此外, 利用红外光谱的方法研究了强磁场下石墨烯超晶格体系不同朗道能级之间的跃迁, 发现这种跃迁满足有质量狄拉克费米子的行为, 对应38 meV的本征能隙. 在此基础上, 我们在380 meV位置发现一个同超晶格能量对应的光电导峰. 通过利用旋量势中三个不同的势分量对光电导峰进行拟合, 发现赝自旋杂化势起主导作用. 进一步研究表明赝自旋杂化势强度随载流子浓度的增大显著降低, 表明电子-电子相互作用引起的旋量势的重构.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回