Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the local field enhancement of elliptical gold nanotube

Cong Chao Wu Da-Jian Liu Xiao-Jun

Study on the local field enhancement of elliptical gold nanotube

Cong Chao, Wu Da-Jian, Liu Xiao-Jun
PDF
Get Citation
  • The local electric field components of the elliptical gold nanotube are calculated based on the finite difference time domain (FDTD) method. It is find that when the wavelength of the incident light is just at a resonant wavelength, the local field enhancement of the gold nanotube reaches a maximum. The increase of the semiminor axis of the ellipse makes the distribution of the local field change from a distribution that is high in both sides and low in the middle part of the nanotube into a distribution that is uniform around the tube. With the increase of the angle between the incident polarization and the semimajor axis, the local electric field components increase rapidly. The increases of the dielectric constants for both the core and the embedding medium cause the local field around the nanotube to decrease.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104319, 11074124, 10904052), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011542), and PAPD.
    [1]

    Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, Goudonnet J P 1999 Phys. Rev. Lett. 82 2590

    [2]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A 2001 Adv. Mater. 13 1501

    [3]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331

    [4]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [5]

    Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567

    [6]

    Kundu J, Le F, Nordlander P, Halas N J 2008 Chem. Phys. Lett. 452 115

    [7]

    Neuendorf R, Quinten M, Kreibig U 1996 J. Chem. Phys. 104 6348

    [8]

    Bohren C F, Huffman D R 1983 Absorption and scattering of light by small particles (New York: Wiley)

    [9]

    Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431

    [10]

    Wu D J, Xu X D, Liu X J 2008 J. Chem. Phys. 129 074711

    [11]

    Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419

    [12]

    Prodan E, Nordlander P, Halas N J 2003 Nano Lett. 3 1411

    [13]

    Schelm S, Smith G B 2005 J. Phys. Chem. B 109 1689

    [14]

    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444

    [15]

    Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431

    [16]

    Averitt R D, Westcott S L, Halas N J 1999 J. Opt. Soc. Am. B 16 1824

    [17]

    Averitt R D, Sarkar D, Halas N J 1997 Phys. Rev. Lett. 78 4217

    [18]

    Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese) [吴大建, 刘晓峻 2008 物理学报 57 5138]

    [19]

    Wu D J, Liu X J 2010 Appl. Phys. Lett. 97, 061904

    [20]

    Wu D J, Liu X J 2010 Appl. Phys. Lett. 96, 151912

    [21]

    Zhu J, Bai S W, Zhao J W, Li J J 2009 Appl. Phys. A 97 431

    [22]

    Leveque G, Martin O J F 2006 Opt. Express 14 9971

    [23]

    Limmer S J, Chou T P, Cao G Z 2003 J. Phys. Chem. B 107 13313

    [24]

    Mock J J, Oldenburg S J, Smith D R, Schultz D A, Schultz S 2002 Nano Lett. 2 465

    [25]

    Hendren W R, Murphy A, Evans P, Connor D, Wurtz G A, Zayats A V, Atkinson R, Pollard R J 2008 J. Phys.: Condens. Matter 20 362203

    [26]

    Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102 (in Chinese) [丛超, 吴大建, 刘晓峻 2011 物理学报 60 046102]

    [27]

    Wu D J, Liu X J, Li B 2011 J. Appl. Phys. 109 083540

    [28]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245

    [29]

    Wei H, Hao F, Huang Y Z, Wang W Z, Nordlander P, Xu H X 2008 Nano Lett. 8 2497

    [30]

    Brewer S H, Anthireya S J, Lappi S E, Drapcho D L, Franzen S 2002 Langmuir 18 4460

    [31]

    Oldenburg S J, Hale G D, Radloff C, Halas N J 1999 Appl. Phys. Lett. 75 1063

    [32]

    Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419

    [33]

    Zhu J 2007 Appl. Phys. A 88 673

  • [1]

    Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, Goudonnet J P 1999 Phys. Rev. Lett. 82 2590

    [2]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A 2001 Adv. Mater. 13 1501

    [3]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331

    [4]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [5]

    Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567

    [6]

    Kundu J, Le F, Nordlander P, Halas N J 2008 Chem. Phys. Lett. 452 115

    [7]

    Neuendorf R, Quinten M, Kreibig U 1996 J. Chem. Phys. 104 6348

    [8]

    Bohren C F, Huffman D R 1983 Absorption and scattering of light by small particles (New York: Wiley)

    [9]

    Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431

    [10]

    Wu D J, Xu X D, Liu X J 2008 J. Chem. Phys. 129 074711

    [11]

    Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419

    [12]

    Prodan E, Nordlander P, Halas N J 2003 Nano Lett. 3 1411

    [13]

    Schelm S, Smith G B 2005 J. Phys. Chem. B 109 1689

    [14]

    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444

    [15]

    Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431

    [16]

    Averitt R D, Westcott S L, Halas N J 1999 J. Opt. Soc. Am. B 16 1824

    [17]

    Averitt R D, Sarkar D, Halas N J 1997 Phys. Rev. Lett. 78 4217

    [18]

    Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese) [吴大建, 刘晓峻 2008 物理学报 57 5138]

    [19]

    Wu D J, Liu X J 2010 Appl. Phys. Lett. 97, 061904

    [20]

    Wu D J, Liu X J 2010 Appl. Phys. Lett. 96, 151912

    [21]

    Zhu J, Bai S W, Zhao J W, Li J J 2009 Appl. Phys. A 97 431

    [22]

    Leveque G, Martin O J F 2006 Opt. Express 14 9971

    [23]

    Limmer S J, Chou T P, Cao G Z 2003 J. Phys. Chem. B 107 13313

    [24]

    Mock J J, Oldenburg S J, Smith D R, Schultz D A, Schultz S 2002 Nano Lett. 2 465

    [25]

    Hendren W R, Murphy A, Evans P, Connor D, Wurtz G A, Zayats A V, Atkinson R, Pollard R J 2008 J. Phys.: Condens. Matter 20 362203

    [26]

    Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102 (in Chinese) [丛超, 吴大建, 刘晓峻 2011 物理学报 60 046102]

    [27]

    Wu D J, Liu X J, Li B 2011 J. Appl. Phys. 109 083540

    [28]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245

    [29]

    Wei H, Hao F, Huang Y Z, Wang W Z, Nordlander P, Xu H X 2008 Nano Lett. 8 2497

    [30]

    Brewer S H, Anthireya S J, Lappi S E, Drapcho D L, Franzen S 2002 Langmuir 18 4460

    [31]

    Oldenburg S J, Hale G D, Radloff C, Halas N J 1999 Appl. Phys. Lett. 75 1063

    [32]

    Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419

    [33]

    Zhu J 2007 Appl. Phys. A 88 673

  • [1] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [2] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [3] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
    [4] Application Research of Ant Colony Cellular Optimization Algorithm in Population Evacuation Path Planning. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191774
    [5] Zhang Shi, Wang Pan, Zhang Rui-Hao, Chen Hong. A new method for selecting arbitrary Poincare section. Acta Physica Sinica, 2020, 69(4): 040503. doi: 10.7498/aps.69.20191585
    [6] Calibration source for OH radical based on synchronous photolysis. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200153
    [7] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [8] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [9] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [10] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [11] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [12] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on \begin{document}${\langle 100 \rangle }$\end{document} interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [13] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • Citation:
Metrics
  • Abstract views:  1600
  • PDF Downloads:  487
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2011
  • Accepted Date:  15 June 2011
  • Published Online:  15 April 2012

Study on the local field enhancement of elliptical gold nanotube

  • 1. School of Physics, Nanjing University, Nanjing 210093, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11104319, 11074124, 10904052), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011542), and PAPD.

Abstract: The local electric field components of the elliptical gold nanotube are calculated based on the finite difference time domain (FDTD) method. It is find that when the wavelength of the incident light is just at a resonant wavelength, the local field enhancement of the gold nanotube reaches a maximum. The increase of the semiminor axis of the ellipse makes the distribution of the local field change from a distribution that is high in both sides and low in the middle part of the nanotube into a distribution that is uniform around the tube. With the increase of the angle between the incident polarization and the semimajor axis, the local electric field components increase rapidly. The increases of the dielectric constants for both the core and the embedding medium cause the local field around the nanotube to decrease.

Reference (33)

Catalog

    /

    返回文章
    返回