Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on stimulated Brillouin scatting energy transfer to amplify laser pulses for shock ignition in laser fusion facilities

Yuan Qiang Wei Xiao-Feng Zhang Xiao-Min Zhang Xin Zhao Jun-Pu Huang Wen-Hui Hu Dong-Xia

Study on stimulated Brillouin scatting energy transfer to amplify laser pulses for shock ignition in laser fusion facilities

Yuan Qiang, Wei Xiao-Feng, Zhang Xiao-Min, Zhang Xin, Zhao Jun-Pu, Huang Wen-Hui, Hu Dong-Xia
PDF
Get Citation
  • Shock ignition is considered as a relatively robust way to achieve the efficient fuel burn in inertial confinement fusion. However it requires intense laser pulses of sub-ns to launch strong convergent shock to ignite the pre-compressed target. Here we present a novel method, which has a substantially high extraction efficiency, to amplify laser pulses of ~200 ps for shock ignition. In this method, stacking pulse with a Stokes light of ~200 ps in the front and a pump light of ~5 ns following, is employed to propagate in the amplifier to extract the stored energy, then in the final system after harmonic conversion, laser energy is transferred from pump pulse to probe pulse by stimulated Brillouin scattering. Because of employing long pulse in the main amplifier, an output laser energy of 1520 kJ is achievable at fundamental frequency. Simulations show that the energy transfer efficiency is up to 75%, considering harmonic conversion efficiency of 60%80%, implying that 510 kJ laser pulses of ~200 ps can be produced using this scheme. As a result, only ~20 beams are required to generate the ignitor, reducing the cost for realizing the shock ignition.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074225, 10904132).
    [1]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001

    [2]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626

    [3]
    [4]
    [5]

    Kodama R, Shiraga H, Shigemori K, Toyama Y, Fujioka S, Azechi H, Fujita H, Habara H, Hall T, Izawa Y, Jitsuno T, Kitagawa Y, Krushelnick K M, Lancaster K L, Mima K, Nagai K, Nakai M, Nishimura H, Norimatsu T, Norreys P A, Sakabe S, Tanaka K A, Youssef A, Zepf M, Yamanaka T 2002 Nature 418 933

    [6]
    [7]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798

    [8]

    Nuckolls J O, Wood L O, Thiessen A L, Zimmerman G E 1972 Nature 239 139

    [9]
    [10]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [11]
    [12]

    Lindl J 1995 Phys. Plasmas 2 3933

    [13]
    [14]
    [15]

    Theobald W, Betti R, Stoeckl C, Anderson K S, Delettrez J A, Glebov V Y, Goncharov V N, Marshall F J, Maywar D N, Mccrory R L, Meyerhofer D D, Radha P B, Sangster T C, Seka W, Shvarts D, Smalyuk V A, Solodov A A, Yaakobi B, Zhou C D, Frenje J A, Li C K, Seguin F H, Petrasso R D, Perkins L J 2008 Phys. Plasmas 15 56301

    [16]
    [17]

    Ribeyre X, Schurtz G, Lafon M, Galera S, Weber S 2009 Plasma Phys. Contr. F 51 15013

    [18]
    [19]

    Perkins L J, Betti R, Lafortune K N, Williams W H 2009 Phys. Rev. Lett. 103 45004

    [20]

    Schmitt A J, Bates J W, Obenschain S R, Zalesak S T, Fyfe D E, Betti R 2009 Fusion Sci. Technol. 56 377

    [21]
    [22]

    Ribeyre X, Lafon M, Schurtz G, Olazabal-Loume M, Breil J, Galera S, Weber S 2009 Plasma Phys. Contr. F 51 124030

    [23]
    [24]
    [25]

    Schmitt A J, Bates J W, Obenschain S P, Zalesak S T, Fyfe D E 2010 Phys. Plasmas 17 42701

    [26]

    Canaud B, Temporal M 2010 New J. Phys. 12 43037

    [27]
    [28]

    Klimo O, Weber S, Tikhonchuk V T, Limpouch J 2010 Plasma Phys. Contr. F 52 55013

    [29]
    [30]
    [31]

    Lafon M, Ribeyre X, Schurtz G 2010 Phys. Plasmas 17 52704

    [32]
    [33]

    Bates J W, Schmitt A J, Fyfe D E, Obenschain S P, Zalesak S T 2010 High Energ. Dens. Phys. 6 128

    [34]

    Atzeni S, Schiavi A, Marocchino A 2011 Plasma Phys. Contr. F 53 35010

    [35]
    [36]

    Canaud B, Laffite S, Temporal M 2011 Nucl. Fusion 51 62001

    [37]
    [38]
    [39]

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 015202 (in Chinese) [袁强, 胡东霞, 张鑫, 赵军谱, 胡思得, 黄文会, 魏晓峰 2011 物理学报 60 015202]

    [40]

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 045207 (in Chinese) [袁强, 胡东霞, 张鑫, 赵军谱, 胡思得, 黄文会, 魏晓峰 2011 物理学报 60 045207]

    [41]
    [42]
    [43]

    Cecchetti C A, Giulietti A, Koester P, Labate L, Levato T, Gizzi L A, Antonelli L, Patria A, Batani D, Kozlova M, Margarone D, Nejdl J, Rus B, Sawicka M, Lafon M, Ribeyre X, Schurtz G 2011 Proc. SPIE 8080 80802A

    [44]
    [45]

    Canaud B, Garaude F, Clique C, Lecler N, Masson A, Quach R, Van der Vliet J 2007 Nucl. Fusion 47 1652

    [46]
    [47]

    Marozas J A, Marshall F J, Craxton R S, Igumenshchev I V, Skupsky S, Bonino M J, Collins T J B, Epstein R, Glebov V Y, Jacobs-Perkins D, Knauer J P, Mccrory R L, Mckenty P W, Meyerhofer D D, Noyes S G, Radha P B, Sangster T C, Seka W, Smalyuk V A 2006 Phys. Plasmas 13 56311

    [48]
    [49]

    Craxton R S, Marshall F J, Bonino M J, Epstein R, Mckenty P W, Skupsky S, Delettrez J A, Igumenshchev I V, Jacobs-Perkins D W, Knauer J P, Marozas J A, Radha P B, Seka W 2005 Phys. Plasmas 12 56304

    [50]

    Canaud B, Fortin X, Garaude F, Meyer C, Philippe F, Temporal M, Atzeni S, Schiavi A 2004 Nucl. Fusion 44 1118

    [51]
    [52]

    Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, Mckenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Harding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, Mccrory R L 2004 Phys. Plasmas 11 2763

    [53]
    [54]
    [55]

    Canaud B, Fortin X, Dague N, Bocher J L 2002 Phys. Plasmas 9 4252

    [56]

    Mckenty P W, Goncharov V N, Town R P J, Skupsky S, Betti R, Mccrory R L 2001 Phys. Plasmas 8 2315

    [57]
    [58]

    Dane C B, Zapata L E, Neuman W A, Norton M A, Hackel L A 1995 IEEE J. Quantum Elect. 31 148

    [59]
    [60]
    [61]

    Sirazetdinov V S, Alekseev V N, Charukhchev A V, Kotilev V N, Liber V I, Serebryakov V A 1999 Proc. SPIE 3492 1002

    [62]

    Yoshida H, Hatae T, Fujita H, Nakatsuka M, Kitamura S 2009 Opt. Express 17 13654

    [63]
    [64]
    [65]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (London: IOP Publishing)

    [66]

    Yoshida H, Nakatsuka M, Hatae T, Kitamura S, Sakuma T, Hamano T 2004 Jpn. J. Appl. Phys. 43 L1038

    [67]
    [68]
    [69]

    Yoshida H, Kmetik V, Fujita H, Nakatsuka M, Yamanaka T, Yoshida K 1997 Appl. Opt. 36 3739

  • [1]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001

    [2]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626

    [3]
    [4]
    [5]

    Kodama R, Shiraga H, Shigemori K, Toyama Y, Fujioka S, Azechi H, Fujita H, Habara H, Hall T, Izawa Y, Jitsuno T, Kitagawa Y, Krushelnick K M, Lancaster K L, Mima K, Nagai K, Nakai M, Nishimura H, Norimatsu T, Norreys P A, Sakabe S, Tanaka K A, Youssef A, Zepf M, Yamanaka T 2002 Nature 418 933

    [6]
    [7]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798

    [8]

    Nuckolls J O, Wood L O, Thiessen A L, Zimmerman G E 1972 Nature 239 139

    [9]
    [10]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [11]
    [12]

    Lindl J 1995 Phys. Plasmas 2 3933

    [13]
    [14]
    [15]

    Theobald W, Betti R, Stoeckl C, Anderson K S, Delettrez J A, Glebov V Y, Goncharov V N, Marshall F J, Maywar D N, Mccrory R L, Meyerhofer D D, Radha P B, Sangster T C, Seka W, Shvarts D, Smalyuk V A, Solodov A A, Yaakobi B, Zhou C D, Frenje J A, Li C K, Seguin F H, Petrasso R D, Perkins L J 2008 Phys. Plasmas 15 56301

    [16]
    [17]

    Ribeyre X, Schurtz G, Lafon M, Galera S, Weber S 2009 Plasma Phys. Contr. F 51 15013

    [18]
    [19]

    Perkins L J, Betti R, Lafortune K N, Williams W H 2009 Phys. Rev. Lett. 103 45004

    [20]

    Schmitt A J, Bates J W, Obenschain S R, Zalesak S T, Fyfe D E, Betti R 2009 Fusion Sci. Technol. 56 377

    [21]
    [22]

    Ribeyre X, Lafon M, Schurtz G, Olazabal-Loume M, Breil J, Galera S, Weber S 2009 Plasma Phys. Contr. F 51 124030

    [23]
    [24]
    [25]

    Schmitt A J, Bates J W, Obenschain S P, Zalesak S T, Fyfe D E 2010 Phys. Plasmas 17 42701

    [26]

    Canaud B, Temporal M 2010 New J. Phys. 12 43037

    [27]
    [28]

    Klimo O, Weber S, Tikhonchuk V T, Limpouch J 2010 Plasma Phys. Contr. F 52 55013

    [29]
    [30]
    [31]

    Lafon M, Ribeyre X, Schurtz G 2010 Phys. Plasmas 17 52704

    [32]
    [33]

    Bates J W, Schmitt A J, Fyfe D E, Obenschain S P, Zalesak S T 2010 High Energ. Dens. Phys. 6 128

    [34]

    Atzeni S, Schiavi A, Marocchino A 2011 Plasma Phys. Contr. F 53 35010

    [35]
    [36]

    Canaud B, Laffite S, Temporal M 2011 Nucl. Fusion 51 62001

    [37]
    [38]
    [39]

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 015202 (in Chinese) [袁强, 胡东霞, 张鑫, 赵军谱, 胡思得, 黄文会, 魏晓峰 2011 物理学报 60 015202]

    [40]

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 045207 (in Chinese) [袁强, 胡东霞, 张鑫, 赵军谱, 胡思得, 黄文会, 魏晓峰 2011 物理学报 60 045207]

    [41]
    [42]
    [43]

    Cecchetti C A, Giulietti A, Koester P, Labate L, Levato T, Gizzi L A, Antonelli L, Patria A, Batani D, Kozlova M, Margarone D, Nejdl J, Rus B, Sawicka M, Lafon M, Ribeyre X, Schurtz G 2011 Proc. SPIE 8080 80802A

    [44]
    [45]

    Canaud B, Garaude F, Clique C, Lecler N, Masson A, Quach R, Van der Vliet J 2007 Nucl. Fusion 47 1652

    [46]
    [47]

    Marozas J A, Marshall F J, Craxton R S, Igumenshchev I V, Skupsky S, Bonino M J, Collins T J B, Epstein R, Glebov V Y, Jacobs-Perkins D, Knauer J P, Mccrory R L, Mckenty P W, Meyerhofer D D, Noyes S G, Radha P B, Sangster T C, Seka W, Smalyuk V A 2006 Phys. Plasmas 13 56311

    [48]
    [49]

    Craxton R S, Marshall F J, Bonino M J, Epstein R, Mckenty P W, Skupsky S, Delettrez J A, Igumenshchev I V, Jacobs-Perkins D W, Knauer J P, Marozas J A, Radha P B, Seka W 2005 Phys. Plasmas 12 56304

    [50]

    Canaud B, Fortin X, Garaude F, Meyer C, Philippe F, Temporal M, Atzeni S, Schiavi A 2004 Nucl. Fusion 44 1118

    [51]
    [52]

    Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, Mckenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Harding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, Mccrory R L 2004 Phys. Plasmas 11 2763

    [53]
    [54]
    [55]

    Canaud B, Fortin X, Dague N, Bocher J L 2002 Phys. Plasmas 9 4252

    [56]

    Mckenty P W, Goncharov V N, Town R P J, Skupsky S, Betti R, Mccrory R L 2001 Phys. Plasmas 8 2315

    [57]
    [58]

    Dane C B, Zapata L E, Neuman W A, Norton M A, Hackel L A 1995 IEEE J. Quantum Elect. 31 148

    [59]
    [60]
    [61]

    Sirazetdinov V S, Alekseev V N, Charukhchev A V, Kotilev V N, Liber V I, Serebryakov V A 1999 Proc. SPIE 3492 1002

    [62]

    Yoshida H, Hatae T, Fujita H, Nakatsuka M, Kitamura S 2009 Opt. Express 17 13654

    [63]
    [64]
    [65]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (London: IOP Publishing)

    [66]

    Yoshida H, Nakatsuka M, Hatae T, Kitamura S, Sakuma T, Hamano T 2004 Jpn. J. Appl. Phys. 43 L1038

    [67]
    [68]
    [69]

    Yoshida H, Kmetik V, Fujita H, Nakatsuka M, Yamanaka T, Yoshida K 1997 Appl. Opt. 36 3739

  • [1] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [2] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [3] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [4] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [5] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
    [6] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [7] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [8] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [9] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [10] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
  • Citation:
Metrics
  • Abstract views:  1545
  • PDF Downloads:  543
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2011
  • Accepted Date:  04 June 2012
  • Published Online:  05 June 2012

Study on stimulated Brillouin scatting energy transfer to amplify laser pulses for shock ignition in laser fusion facilities

  • 1. Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900, China;
  • 2. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11074225, 10904132).

Abstract: Shock ignition is considered as a relatively robust way to achieve the efficient fuel burn in inertial confinement fusion. However it requires intense laser pulses of sub-ns to launch strong convergent shock to ignite the pre-compressed target. Here we present a novel method, which has a substantially high extraction efficiency, to amplify laser pulses of ~200 ps for shock ignition. In this method, stacking pulse with a Stokes light of ~200 ps in the front and a pump light of ~5 ns following, is employed to propagate in the amplifier to extract the stored energy, then in the final system after harmonic conversion, laser energy is transferred from pump pulse to probe pulse by stimulated Brillouin scattering. Because of employing long pulse in the main amplifier, an output laser energy of 1520 kJ is achievable at fundamental frequency. Simulations show that the energy transfer efficiency is up to 75%, considering harmonic conversion efficiency of 60%80%, implying that 510 kJ laser pulses of ~200 ps can be produced using this scheme. As a result, only ~20 beams are required to generate the ignitor, reducing the cost for realizing the shock ignition.

Reference (69)

Catalog

    /

    返回文章
    返回