Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and experimental investigation of W doped ZnO

Wang Yan-Feng Huang Qian Song Qing-Gong Liu Yang Wei Chang-Chun Zhao Ying Zhang Xiao-Dan

Theoretical and experimental investigation of W doped ZnO

Wang Yan-Feng, Huang Qian, Song Qing-Gong, Liu Yang, Wei Chang-Chun, Zhao Ying, Zhang Xiao-Dan
PDF
Get Citation
  • The properties of high valence difference W doped ZnO films (WZO) are investigated by means of plane wave pseudo-potential method based on the density-functional theory (DFT) and pulsed DC magnetron sputtering technique. The theoretical result shows after incorporation of W the Fermi level enters into the conduction band, showing that a typical n-type metallic characteristic and the optical band gap Eg* increase significantly. The carriers originate from the orbits of W 5d, O 2p and Zn 3d. Moreover, the increase of the lattice constant is due to the longer bond length of W-O and lattice distortion. The experimental results demonstrate that the deposited WZO film grows preferentially in the (002) crystallographic direction but the lattice constant increases. The resistivity decreases from 1.35 10-2 cm to 1.55 10-3 cm and the optical bandgap extends from 3.27 eV to 3.48 eV compared with those of ZnO. The average transmittance is over 83 % in a wavelength range from 400 to 1100 nm. The experimental results are in good agreement with the theoretical results, showing that the WZO thin film has a great potential application as transparent conductive oxide.
    • Funds: Project supported by the High Technology Research and Development Program of China (Grant No. 2009AA050602), the National Basic Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707), the National Natural Science Foundation of China (Grant No. 60976051), the International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-08-0295), the Ministry of Education Key Laboratory of Topics (Grant No. 2011KFKT06) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 65011981).
    [1]

    Granqvist C G, Hultaker A 2002 Thin Solid Films 411 1

    [2]

    Lewis B G, Paine D C 2000 MRS Bull. 25 22

    [3]
    [4]
    [5]

    Ginley D S, Bright C 2000 MRS Bull. 25 15

    [6]
    [7]

    Chopra K L, Major S, Pandya D K 1983 Thin Solid Films 102 1

    [8]
    [9]

    Granqvist C G 2007 Sol. Energy Mater. Sol. Cells 91 1529

    [10]

    Berginski M, Hpkes J, Schlute M, Schpe G, Stiebig H, Wuttig M 2007 J. Appl. Phys. 101 074903

    [11]
    [12]
    [13]

    Zhu H, Hpkes J, Bunte E, Owen J, Huang S M 2011 Sol. Energy Mater. Sol. Cells 95 964

    [14]

    Sang B S, Kushiya K, Okumura D, Yamase O 2001 Sol. Energy Mater. Sol. Cells 67 237

    [15]
    [16]
    [17]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyey T, Dante M, Heeger A J 2007 Science 317 222

    [18]
    [19]

    Meng Y, Yang X, Chen H, Shen J, Jiang Y, Zhang Z, Hua Z 2001 Thin Solid Films 394 218

    [20]

    Jung S M, Kim Y H, Kim S I, Yoo S I 2011 Curr. Appl. Phys. 11 S191

    [21]
    [22]
    [23]

    Ngoma B D, Mpahane T, Manyala N, Nemraoui O, Buttner U, Kana J B, Fasasi A Y, Maaza M, Beye A C 2009 Appl. Surf. Sci. 255 4153

    [24]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [25]
    [26]
    [27]

    Liu J J 2010 Acta Phys. Sin. 59 6446 (in Chinese) [刘建军 2010 物理学报 59 6446]

    [28]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [29]
    [30]
    [31]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [32]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [33]
    [34]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [35]
    [36]
    [37]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Optica Sinica 29 1025 (in Chinses) [张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 1025]

    [38]
    [39]

    Fang Z B, Tan Y S, Liu X Q, Yang Y H, Wang Y Y 2004 Chin. Phys. 13 1330

    [40]
    [41]

    Ding J J, Chen H X, Ma S Y 2010 Appl. Surf. Sci. 256 4304

    [42]

    Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvag H, Grossner U, Svensson B G 2006 J. Appl. Phys. 100 043709

    [43]
    [44]

    Xu Y N, Ching W Y 1993 Phys. Rev. B 48 4335

    [45]
    [46]
    [47]

    Ghosh S, Sarkar A, Chaudhuri S, Pal A K 1991 Thin Solid Films 205 64

    [48]

    Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371

    [49]
    [50]
    [51]

    Burstein E 1954 Phys. Rev. 93 632

    [52]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775

    [53]
  • [1]

    Granqvist C G, Hultaker A 2002 Thin Solid Films 411 1

    [2]

    Lewis B G, Paine D C 2000 MRS Bull. 25 22

    [3]
    [4]
    [5]

    Ginley D S, Bright C 2000 MRS Bull. 25 15

    [6]
    [7]

    Chopra K L, Major S, Pandya D K 1983 Thin Solid Films 102 1

    [8]
    [9]

    Granqvist C G 2007 Sol. Energy Mater. Sol. Cells 91 1529

    [10]

    Berginski M, Hpkes J, Schlute M, Schpe G, Stiebig H, Wuttig M 2007 J. Appl. Phys. 101 074903

    [11]
    [12]
    [13]

    Zhu H, Hpkes J, Bunte E, Owen J, Huang S M 2011 Sol. Energy Mater. Sol. Cells 95 964

    [14]

    Sang B S, Kushiya K, Okumura D, Yamase O 2001 Sol. Energy Mater. Sol. Cells 67 237

    [15]
    [16]
    [17]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyey T, Dante M, Heeger A J 2007 Science 317 222

    [18]
    [19]

    Meng Y, Yang X, Chen H, Shen J, Jiang Y, Zhang Z, Hua Z 2001 Thin Solid Films 394 218

    [20]

    Jung S M, Kim Y H, Kim S I, Yoo S I 2011 Curr. Appl. Phys. 11 S191

    [21]
    [22]
    [23]

    Ngoma B D, Mpahane T, Manyala N, Nemraoui O, Buttner U, Kana J B, Fasasi A Y, Maaza M, Beye A C 2009 Appl. Surf. Sci. 255 4153

    [24]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [25]
    [26]
    [27]

    Liu J J 2010 Acta Phys. Sin. 59 6446 (in Chinese) [刘建军 2010 物理学报 59 6446]

    [28]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [29]
    [30]
    [31]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [32]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [33]
    [34]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [35]
    [36]
    [37]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Optica Sinica 29 1025 (in Chinses) [张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 1025]

    [38]
    [39]

    Fang Z B, Tan Y S, Liu X Q, Yang Y H, Wang Y Y 2004 Chin. Phys. 13 1330

    [40]
    [41]

    Ding J J, Chen H X, Ma S Y 2010 Appl. Surf. Sci. 256 4304

    [42]

    Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvag H, Grossner U, Svensson B G 2006 J. Appl. Phys. 100 043709

    [43]
    [44]

    Xu Y N, Ching W Y 1993 Phys. Rev. B 48 4335

    [45]
    [46]
    [47]

    Ghosh S, Sarkar A, Chaudhuri S, Pal A K 1991 Thin Solid Films 205 64

    [48]

    Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371

    [49]
    [50]
    [51]

    Burstein E 1954 Phys. Rev. 93 632

    [52]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775

    [53]
  • Citation:
Metrics
  • Abstract views:  2100
  • PDF Downloads:  680
  • Cited By: 0
Publishing process
  • Received Date:  18 October 2011
  • Accepted Date:  04 December 2011
  • Published Online:  05 July 2012

Theoretical and experimental investigation of W doped ZnO

  • 1. Institute of Photo-electronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Key Laboratory of Opto-electronic Information Science and Technology, Ministry of Education, Tianjin 300071, China;
  • 2. College of Science, Civil Aviation University of China, Tianjin 300300, China
Fund Project:  Project supported by the High Technology Research and Development Program of China (Grant No. 2009AA050602), the National Basic Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707), the National Natural Science Foundation of China (Grant No. 60976051), the International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-08-0295), the Ministry of Education Key Laboratory of Topics (Grant No. 2011KFKT06) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 65011981).

Abstract: The properties of high valence difference W doped ZnO films (WZO) are investigated by means of plane wave pseudo-potential method based on the density-functional theory (DFT) and pulsed DC magnetron sputtering technique. The theoretical result shows after incorporation of W the Fermi level enters into the conduction band, showing that a typical n-type metallic characteristic and the optical band gap Eg* increase significantly. The carriers originate from the orbits of W 5d, O 2p and Zn 3d. Moreover, the increase of the lattice constant is due to the longer bond length of W-O and lattice distortion. The experimental results demonstrate that the deposited WZO film grows preferentially in the (002) crystallographic direction but the lattice constant increases. The resistivity decreases from 1.35 10-2 cm to 1.55 10-3 cm and the optical bandgap extends from 3.27 eV to 3.48 eV compared with those of ZnO. The average transmittance is over 83 % in a wavelength range from 400 to 1100 nm. The experimental results are in good agreement with the theoretical results, showing that the WZO thin film has a great potential application as transparent conductive oxide.

Reference (53)

Catalog

    /

    返回文章
    返回