Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomistic study of deposition process of Be thin film on Be substrate

Huang Xiao-Yu Cheng Xin-Lu Xu Jia-Jing Wu Wei-Dong

Atomistic study of deposition process of Be thin film on Be substrate

Huang Xiao-Yu, Cheng Xin-Lu, Xu Jia-Jing, Wu Wei-Dong
PDF
Get Citation
  • The deposition process for Be atoms on Be substrate is studied using molecular dynamic simulations. The morphologies of the deposited films are distinctly different under different incident energies. In a specified range, the surface roughness of the film decreases with the increase of the incident energy. However, the over-high incident energy is unfavourable for reducing the surface roughness of the film. The distributions of the coordination numbers and potential energy of the single atom are used to analyze the film structure under different incident energies. With the bigger incident energy the density of the film is bigger and the distribution of the potential energy of the single atom is more continuous. At the same time, the distribution of the atomic stress is more continuous. Finally, the energy conversion process of the single atom is given, and the influence of the initial incident energy on the locally accelerated energy near the substrate is analyzed.
      Corresponding author: , wuweidong@163.com
    [1]

    Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 1124 (in Chinese) [张庆瑜, 马腾才, 潘正英, 汤家镛 2000 物理学报 49 1124]

    [2]

    Schneider M, Rahman A, Schuller I K 1985 Phys. ReV. Lett. 55 604

    [3]

    Liang Dong, Smith R W 1996 J. Appl. Phys. 80 5682

    [4]

    Hong Z H, Hwang S F, Fang T H 2007 Computational Materials Science 41 70

    [5]

    Zhang L, Feng J Y 2005 Nuclear Instruments and Methods in Physics Research B 234 487

    [6]

    Lee S, Chuang Y C 2007 Jpn. J. Appl. Phys. 46 6309

    [7]

    Chung C Y, Chung Y C 2006 Materials Letters 60 1063

    [8]

    Kim S P, Chung Y C 2003 J. Appl. Phys. 93 8564

    [9]

    Lee S G, Chung Y C 2007 Applied Surface Science 253 8896

    [10]

    Albert M, Thoma D J 2004 J. Appl. Phys. 95 2436

    [11]

    Ganchenkoval M G, Borodin V A 2007 Physical Review B 75 054108

    [12]

    Meyerhoff R W, Smith J F 1962 J. Appl. Phys. 33 219

    [13]

    Nadal M H, Bourgeois L 2010 J. Appl. Phys. 108 033512

    [14]

    Benedict L X, Ogitsu T 2009 Physical ReView B 79 064106

    [15]

    Olijnyk H, Jephcoat A P 2000 J. Phys.: Condens. Matter 12 8913

    [16]

    Hite D A, Tang S J, 2003 Chemical Physics Letters 367 129

    [17]

    Baskes M I, Johnson R A, 1994 Modelling Simul. Mater Sci. Eng 2 147

    [18]

    Daw M S, Baskes M I, 1984 Phys ReV. B 29 6443

    [19]

    Daw M S, Foiles S M, Baskes M I, 1993 Mater. Sci. Rep. 9 251

    [20]

    Lee S G, Chung Y C, 2006 J. Appl. Phys. 100 074905

    [21]

    Wen Y H, Zhu Y Z, 2003 Advances in Mechanics 33 65( in Chinese) [文玉华, 朱玉曾 2003 力学进展 33 65]

    [22]

    Hong Z H, Hwang S F, Fang T H, 2010 Computational Materials Science 48 520

    [23]

    Liang H Y 2001 Ph. D. Dissertation (Hefei: China University of Sci and Tech) (in Chinese) [梁海弋 2001 博士学位论文 (合肥: 中国科学技术大学)]

    [24]

    Kim B H, Chung Y C 2009 J. Appl. Phys. 106 044304

  • [1]

    Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 1124 (in Chinese) [张庆瑜, 马腾才, 潘正英, 汤家镛 2000 物理学报 49 1124]

    [2]

    Schneider M, Rahman A, Schuller I K 1985 Phys. ReV. Lett. 55 604

    [3]

    Liang Dong, Smith R W 1996 J. Appl. Phys. 80 5682

    [4]

    Hong Z H, Hwang S F, Fang T H 2007 Computational Materials Science 41 70

    [5]

    Zhang L, Feng J Y 2005 Nuclear Instruments and Methods in Physics Research B 234 487

    [6]

    Lee S, Chuang Y C 2007 Jpn. J. Appl. Phys. 46 6309

    [7]

    Chung C Y, Chung Y C 2006 Materials Letters 60 1063

    [8]

    Kim S P, Chung Y C 2003 J. Appl. Phys. 93 8564

    [9]

    Lee S G, Chung Y C 2007 Applied Surface Science 253 8896

    [10]

    Albert M, Thoma D J 2004 J. Appl. Phys. 95 2436

    [11]

    Ganchenkoval M G, Borodin V A 2007 Physical Review B 75 054108

    [12]

    Meyerhoff R W, Smith J F 1962 J. Appl. Phys. 33 219

    [13]

    Nadal M H, Bourgeois L 2010 J. Appl. Phys. 108 033512

    [14]

    Benedict L X, Ogitsu T 2009 Physical ReView B 79 064106

    [15]

    Olijnyk H, Jephcoat A P 2000 J. Phys.: Condens. Matter 12 8913

    [16]

    Hite D A, Tang S J, 2003 Chemical Physics Letters 367 129

    [17]

    Baskes M I, Johnson R A, 1994 Modelling Simul. Mater Sci. Eng 2 147

    [18]

    Daw M S, Baskes M I, 1984 Phys ReV. B 29 6443

    [19]

    Daw M S, Foiles S M, Baskes M I, 1993 Mater. Sci. Rep. 9 251

    [20]

    Lee S G, Chung Y C, 2006 J. Appl. Phys. 100 074905

    [21]

    Wen Y H, Zhu Y Z, 2003 Advances in Mechanics 33 65( in Chinese) [文玉华, 朱玉曾 2003 力学进展 33 65]

    [22]

    Hong Z H, Hwang S F, Fang T H, 2010 Computational Materials Science 48 520

    [23]

    Liang H Y 2001 Ph. D. Dissertation (Hefei: China University of Sci and Tech) (in Chinese) [梁海弋 2001 博士学位论文 (合肥: 中国科学技术大学)]

    [24]

    Kim B H, Chung Y C 2009 J. Appl. Phys. 106 044304

  • [1] Ke Chuan, Zhao Cheng-Li, Gou Fu-Jun, Zhao Yong. Molecular dynamics study of interaction between the H atoms and Si surface. Acta Physica Sinica, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [2] He Ping-Ni, Ning Jian-Ping, Qin You-Min, Zhao Cheng-Li, Gou Fu-Jun. Molecular dynamics simulations of low-energy Clatoms etching Si(100) surface. Acta Physica Sinica, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [3] Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Zhao Cheng-Li, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [4] Zhang Chao, Lv Hai-Feng, Zhang Qing-Yu. . Acta Physica Sinica, 2002, 51(10): 2329-2334. doi: 10.7498/aps.51.2329
    [5] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. Molecular dynamics simulation of Gd adatom diffusion on Cu(110) surface. Acta Physica Sinica, 2003, 52(9): 2254-2258. doi: 10.7498/aps.52.2254
    [6] Wang Yu-Xiang, Chen Shuo. Drops on microstructured surfaces: A numerical study using many-body dissipative particle dynamics. Acta Physica Sinica, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [7] Zhang Ran, Chang Qing, Li Hua. Molecular dynamics simulations on scattering of Ar molecules on smooth and rough surfaces. Acta Physica Sinica, 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
    [8] Zhang Chao, Wang Yong-Liang, Yan Chao, Zhang Qing-Yu. Numerical simulation of the influence of substitutional impurity on the interaction between low-energy Pt atoms and Pt(111) surface. Acta Physica Sinica, 2006, 55(6): 2882-2891. doi: 10.7498/aps.55.2882
    [9] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [10] Cao Hong, Huang Yong, Chen Su-Fen, Zhang Zhan-Wen, Wei Jian-Jun. Influence of pulse tapping technology on surface roughness of polyimide capsule. Acta Physica Sinica, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
  • Citation:
Metrics
  • Abstract views:  2097
  • PDF Downloads:  677
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2011
  • Accepted Date:  10 May 2012
  • Published Online:  05 May 2012

Atomistic study of deposition process of Be thin film on Be substrate

    Corresponding author: wuweidong@163.com
  • 1. The Centre of Laser Fusion Research; China Academy of Engineering Physics, Mianyang 621900, China;
  • 2. Hubei University of Education, Department of Physics and Electronics, Wuhan 430205, China;
  • 3. Institute of Atomic and Molecular Physics; Sichuan University, Chengdu 610065, China

Abstract: The deposition process for Be atoms on Be substrate is studied using molecular dynamic simulations. The morphologies of the deposited films are distinctly different under different incident energies. In a specified range, the surface roughness of the film decreases with the increase of the incident energy. However, the over-high incident energy is unfavourable for reducing the surface roughness of the film. The distributions of the coordination numbers and potential energy of the single atom are used to analyze the film structure under different incident energies. With the bigger incident energy the density of the film is bigger and the distribution of the potential energy of the single atom is more continuous. At the same time, the distribution of the atomic stress is more continuous. Finally, the energy conversion process of the single atom is given, and the influence of the initial incident energy on the locally accelerated energy near the substrate is analyzed.

Reference (24)

Catalog

    /

    返回文章
    返回