搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体-表面相互作用的分子动力学模拟研究

张冉 常青 李桦

气体-表面相互作用的分子动力学模拟研究

张冉, 常青, 李桦
PDF
导出引用
导出核心图
  • 采用分子动力学模拟方法研究了气体分子Ar在光滑和粗糙Pt表面上的散射规律.提出了一种速度抽样方法,计算了不同温度条件下气体分子对光滑和粗糙表面的切向动量适应系数和吸附概率.结果显示:光滑表面条件下,气体分子的切向动量系数和吸附概率都随着温度的升高而降低;粗糙度对气体分子切向动量与表面的适应具有极大的促进作用,当粗糙度足够大时,切向动量适应系数的大小趋近于1.0,对温度的敏感性也逐渐降低.采用粒子束方法对气体分子在光滑和粗糙表面上的散射规律进行了定量分析.总结了散射过程中气体分子的典型轨迹和动量变化规律,将气体分子在光滑表面的散射分为两种类型:单次碰撞后散射和多次碰撞后散射.单次碰撞后散射的气体分子平均切向动量有所减小,而经过多次碰撞后散射的气体分子则倾向于保持原有的平均切向动量.对于粗糙表面,粗糙度的存在使气体分子与表面间的动量和能量适应更加充分,导致气体分子在较粗糙表面上散射后的平均切向动量大幅减小并接近于0,且气体分子在表面上经历的碰撞次数越多,其散射后的能量损失越严重.
      通信作者: 李桦, zr07024221@126.com
    • 基金项目: 国家自然科学基金(批准号:11472004)资助的课题.
    [1]

    Karniadakis G, Beskok A, Aluru N 2005 Micro Flows and Nano Flows: Fundamentals and Simulation(New York: Springer) pp2-8

    [2]

    Verbridge S S, Craighead H G, Parpia J M 2008 Appl. Phys. Lett. 92 013112

    [3]

    Padilla J F, Boyd I D 2009 J. Thermo. Phys. Heat Tr. 23 96

    [4]

    Rovenskaya O I 2015 Int. J. Heat Mass Trans. 89 1024

    [5]

    Hadj Nacer M, Graur I, Perrier P, Molans J G, Wuest M 2014 J. Vac. Sci. Technol. A 32 021621

    [6]

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press) p121 (in Chinese) [沈青 2003 稀薄气体动力学(北京: 国防工业出版社) 第121页]

    [7]

    Hurlbut F C 1997 Adv. Mech. 27 549 (in Chinese) [Hurlbut F C 1997 力学进展 27 549]

    [8]

    Maxwell J C 1879 Phil. Trans. R. Soc. Lond. 170 231

    [9]

    Ohwada T, Sone Y, Aoki K 1989 Phys. Fluids A 1 1588

    [10]

    Lockerby D A, Reese J M, Emerson D R, Barber R W 2004 Phys. Rev. E 70 017303

    [11]

    Pan L S, Liu G R, Lam K Y 1999 J. Micromech. Microeng. 9 89

    [12]

    Wu L, Bogy D B 2003 Trans. ASME J. Tribol. 125 558

    [13]

    Lockerby D A, Reese J M 2008 J. Fluid. Mech. 604 235

    [14]

    Li Q, He Y L, Tang G H, Tao W Q 2011 Microfluid Nanofluid 10 607

    [15]

    Weng C I, Li W L, Hwang C C 1999 Nanotechnology 10 373

    [16]

    Beskok A, Karniadakis G E 1999 Microscale Thermophys. Eng. 3 43

    [17]

    Zhang W M, Meng G, Wei X Y 2012 Microfluid Nanofluid 13 845

    [18]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638

    [19]

    Markvoort A J, Hilbers P A J, Nedea S V 2005 Phys. Rev. E 71 066702

    [20]

    Arya G, Chang H C, Maginn E J 2003 Mol. Simul. 29 697

    [21]

    Yamamoto K 2002 JSME Int. J. Ser. B 45 788

    [22]

    Cao B Y, Chen M, Guo Z Y 2005 Appl. Phys. Lett. 86 091905

    [23]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [24]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [25]

    Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys. Rev. E 81 011203

    [26]

    Sun J, Li Z X 2008 Mol. Phys. 106 2325

    [27]

    Sun J, Li Z X 2010 Comput. Fluids 39 1645

    [28]

    Sun J, Li Z X 2011 Heat Transfer Eng. 32 658

    [29]

    Barisik M, Beskok A 2011 Microfluid Nanofluid 11 269

    [30]

    Barisik M, Beskok A 2012 Microfluid Nanofluid 13 789

    [31]

    Chirita V, Pailthorpe B A, Collins R E 1993 Appl. Phys. 26 133

    [32]

    Chirita V, Pailthorpe B A, Collins R E 1997 Nucl. Instrum. Meth. B 4 12

    [33]

    Finger G W, Kapat J S, Bhattacharya A 2007 J. Fluids Eng. 129 31

    [34]

    Pham T T, To Q D, Lauriat G, Leonard C 2012 Phys. Rev. E 86 051201

    [35]

    Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A 2014 Comput. Fluids 97 31

    [36]

    Kuscer I 1974 Proceeding of the Ninth International Symposium Goettengen, Germany, July 15-20, 1974 p21

    [37]

    Maruyama S 2000 Advances in Numerical Heat Transfer (Vol.2) (Boca Raton: CRC Press) pp189

    [38]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (New York: Cambridge University Press) pp4-5

  • [1]

    Karniadakis G, Beskok A, Aluru N 2005 Micro Flows and Nano Flows: Fundamentals and Simulation(New York: Springer) pp2-8

    [2]

    Verbridge S S, Craighead H G, Parpia J M 2008 Appl. Phys. Lett. 92 013112

    [3]

    Padilla J F, Boyd I D 2009 J. Thermo. Phys. Heat Tr. 23 96

    [4]

    Rovenskaya O I 2015 Int. J. Heat Mass Trans. 89 1024

    [5]

    Hadj Nacer M, Graur I, Perrier P, Molans J G, Wuest M 2014 J. Vac. Sci. Technol. A 32 021621

    [6]

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press) p121 (in Chinese) [沈青 2003 稀薄气体动力学(北京: 国防工业出版社) 第121页]

    [7]

    Hurlbut F C 1997 Adv. Mech. 27 549 (in Chinese) [Hurlbut F C 1997 力学进展 27 549]

    [8]

    Maxwell J C 1879 Phil. Trans. R. Soc. Lond. 170 231

    [9]

    Ohwada T, Sone Y, Aoki K 1989 Phys. Fluids A 1 1588

    [10]

    Lockerby D A, Reese J M, Emerson D R, Barber R W 2004 Phys. Rev. E 70 017303

    [11]

    Pan L S, Liu G R, Lam K Y 1999 J. Micromech. Microeng. 9 89

    [12]

    Wu L, Bogy D B 2003 Trans. ASME J. Tribol. 125 558

    [13]

    Lockerby D A, Reese J M 2008 J. Fluid. Mech. 604 235

    [14]

    Li Q, He Y L, Tang G H, Tao W Q 2011 Microfluid Nanofluid 10 607

    [15]

    Weng C I, Li W L, Hwang C C 1999 Nanotechnology 10 373

    [16]

    Beskok A, Karniadakis G E 1999 Microscale Thermophys. Eng. 3 43

    [17]

    Zhang W M, Meng G, Wei X Y 2012 Microfluid Nanofluid 13 845

    [18]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638

    [19]

    Markvoort A J, Hilbers P A J, Nedea S V 2005 Phys. Rev. E 71 066702

    [20]

    Arya G, Chang H C, Maginn E J 2003 Mol. Simul. 29 697

    [21]

    Yamamoto K 2002 JSME Int. J. Ser. B 45 788

    [22]

    Cao B Y, Chen M, Guo Z Y 2005 Appl. Phys. Lett. 86 091905

    [23]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [24]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [25]

    Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys. Rev. E 81 011203

    [26]

    Sun J, Li Z X 2008 Mol. Phys. 106 2325

    [27]

    Sun J, Li Z X 2010 Comput. Fluids 39 1645

    [28]

    Sun J, Li Z X 2011 Heat Transfer Eng. 32 658

    [29]

    Barisik M, Beskok A 2011 Microfluid Nanofluid 11 269

    [30]

    Barisik M, Beskok A 2012 Microfluid Nanofluid 13 789

    [31]

    Chirita V, Pailthorpe B A, Collins R E 1993 Appl. Phys. 26 133

    [32]

    Chirita V, Pailthorpe B A, Collins R E 1997 Nucl. Instrum. Meth. B 4 12

    [33]

    Finger G W, Kapat J S, Bhattacharya A 2007 J. Fluids Eng. 129 31

    [34]

    Pham T T, To Q D, Lauriat G, Leonard C 2012 Phys. Rev. E 86 051201

    [35]

    Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A 2014 Comput. Fluids 97 31

    [36]

    Kuscer I 1974 Proceeding of the Ninth International Symposium Goettengen, Germany, July 15-20, 1974 p21

    [37]

    Maruyama S 2000 Advances in Numerical Heat Transfer (Vol.2) (Boca Raton: CRC Press) pp189

    [38]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (New York: Cambridge University Press) pp4-5

  • [1] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [2] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [3] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [4] 赵超樱, 范钰婷, 孟义朝, 郭奇志, 谭维翰. 圆柱型光纤螺线圈轨道角动量模式. 物理学报, 2020, 69(5): 054207. doi: 10.7498/aps.69.20190997
    [5] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [6] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [7] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [8] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元的厚度渐变镀银条带探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
  • 引用本文:
    Citation:
计量
  • 文章访问数:  95
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-29
  • 修回日期:  2018-09-27
  • 刊出日期:  2018-11-20

气体-表面相互作用的分子动力学模拟研究

  • 1. 国防科技大学空天科学学院, 长沙 410073
  • 通信作者: 李桦, zr07024221@126.com
    基金项目: 

    国家自然科学基金(批准号:11472004)资助的课题.

摘要: 采用分子动力学模拟方法研究了气体分子Ar在光滑和粗糙Pt表面上的散射规律.提出了一种速度抽样方法,计算了不同温度条件下气体分子对光滑和粗糙表面的切向动量适应系数和吸附概率.结果显示:光滑表面条件下,气体分子的切向动量系数和吸附概率都随着温度的升高而降低;粗糙度对气体分子切向动量与表面的适应具有极大的促进作用,当粗糙度足够大时,切向动量适应系数的大小趋近于1.0,对温度的敏感性也逐渐降低.采用粒子束方法对气体分子在光滑和粗糙表面上的散射规律进行了定量分析.总结了散射过程中气体分子的典型轨迹和动量变化规律,将气体分子在光滑表面的散射分为两种类型:单次碰撞后散射和多次碰撞后散射.单次碰撞后散射的气体分子平均切向动量有所减小,而经过多次碰撞后散射的气体分子则倾向于保持原有的平均切向动量.对于粗糙表面,粗糙度的存在使气体分子与表面间的动量和能量适应更加充分,导致气体分子在较粗糙表面上散射后的平均切向动量大幅减小并接近于0,且气体分子在表面上经历的碰撞次数越多,其散射后的能量损失越严重.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回