搜索

x
中国物理学会期刊

含关联噪声的空间分数阶随机生长方程的动力学标度行为研究

CSTR: 32037.14.aps.62.020501

Dynamic scaling behavior of the space-fractional stochastic growth equation with correlated noise

CSTR: 32037.14.aps.62.020501
PDF
导出引用
  • 为探讨含关联噪声的空间分数阶随机生长方程的动力学标度行为, 本文利用Riesz分数阶导数和Grmwald-Letnikov分数阶导数定义方法研究了关联噪声驱动下 的空间分数阶Edwards-Wilkinson (SFEW)方程在1+1维情况下的数值解, 得到了不同噪声关联因子和分数阶数时的生长指数、粗糙度指数、动力学指数等, 所求出的临界指数均与标度分析方法的结果相符合. 研究表明噪声关联因子和分数阶数均影响到SFEW方程的动力学标度行为,且表现为连续变化的普适类.

     

    In order to study the dynamic scaling behavior of the space-fractional stochastic growth equation with correlated noise, we simulate numerically the space-fractional Edwards-Wilkinson (SFEW) equation driven by correlated noise in (1+1)-dimensional case based on the Riesz-and the Grmwald-Letnikov-type fractional derivatives. The scaling exponents including growth exponent, roughness exponent and dynamic exponent with different noise correlation factors and fractional orders are obtained, which are consistent with the corresponding scaling analysis. Our results show that the noise correlation factors and fractional orders affect the dynamic scaling behavior of the SFEW equation, which displays a continuous changing universality class.

     

    目录

    /

    返回文章
    返回