Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of crystallographic orientation on instability behavior of planar interface in directional solidification

Wang Li-Lin Wang Xian-Bin Wang Hong-Yan Lin Xin Huang Wei-Dong

Effect of crystallographic orientation on instability behavior of planar interface in directional solidification

Wang Li-Lin, Wang Xian-Bin, Wang Hong-Yan, Lin Xin, Huang Wei-Dong
PDF
Get Citation
  • The instability process of planar interface in directional solidification with respect to the crystallographic orientation is studied using a transparent model alloysuccinonitrile-acetone. Three typical crystal grains which have preferred dendrite, tilted dendrite and seaweed patterns at rapid pulling velocity respectively are chosen in our experiment. The experimental results show that the preferred dendrite grain has the shortest incubation time and the smallest initial perturbation wavelength of planar interface instability, the tilted dendrite grain has the largest ones and the seaweed grain has median ones. These results accord qualitatively with previous analytical results and phase-field simulation results. It is also found that the interfacial non-steady-state evolution behaviors of the preferred dendrite grain and the tilted dendrite grain are significantly different from that of the seaweed grain, suggesting that the non-steady-state evolution behavior of planar interface instability is closely related to the crystallographic orientation.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB610402), the National Natural Science Foundation of China (Grant Nos. 50971102, 50901061), and the Fund of the State Key Laboratory of Solidification Processing in NWPU, China (Grant Nos. 02-TZ-2008, 36-TP-2009).
    [1]

    Trivedi R, Somboonsuk K 1985 Acta Metall. 33 1061

    [2]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

    [3]

    Huang W D, Zhou Y H 1991 Acta Metall. Sin. 27 A86 (in Chinese) [黄卫东, 周尧和 1991 金属学报 27 A86]

    [4]

    Warren J A, Langer J S 1993 Phys. Rev. E 47 2702

    [5]

    Losert W, Shi B Q, Cummins H Z 1998 Proc. Natl. Acad. Sci. 95 431

    [6]

    Losert W, Shi B Q, Cummins H Z 1998 Proc. Natl. Acad. Sci. 95 439

    [7]

    Lin X, Li T, Wang L L, Su Y P, Huang W D 2004 Acta Phys. Sin. 53 3971 (in Chinese) [林鑫, 李涛, 王琳琳, 苏云鹏, 黄卫东 2004 物理学报 53 3971]

    [8]

    Huang W D, Lin X, Li T, Wang L L, Inatomi Y 2004 Acta Phys. Sin. 53 3978 (in Chinese) [黄卫东, 林鑫, 李涛, 王琳琳, Inatomi Y 2004 物理学报 53 3978]

    [9]

    Pocheau A, Deschamps J, Georgelin M 2007 JOM 59 71

    [10]

    Utter B, Bodenschatz E 2002 Phys. Rev. E 66 051604

    [11]

    Zhao X B, Liu L, Yang C B, Li Y F, Zhang J, Li Y L, Fu H Z 2011 J. Alloys Compd. 509 9645

    [12]

    Coriell S R, Sekerka R F 1976 J. Cryst. Growth 34 157

    [13]

    Hoyle R B, McFadden G B, Davis S H 1996 Phil. Trans. R. Soc. Lond. A 354 2915

    [14]

    Golovin A A, Davis S H 1998 Physica D 116 363

    [15]

    Wang Z J, Wang J C, Yang G C 2009 Phys. Rev. E 80 052603

    [16]

    Wang Z J, Wang J C, Yang G C 2008 Acta Phys. Sin. 57 1246 (in Chinese) [王志军, 王锦程, 杨根仓 2008 物理学报 57 1246]

    [17]

    Wang Z J, Wang J C, Yang G C 2010 Chin. Phys. B 19 017305

    [18]

    Chen M W, Lan M, Yuan L, Wang Y Y, Wang Z D, Xu J J 2009 Chin. Phys. B 18 1691

    [19]

    Chen M W, Wang X F, Wang Y L, Wang Z D 2012 Adv. Mater. Res. 365 130

    [20]

    Eshelman M A, Trivedi R 1987 Acta Metall. 35 2443

    [21]

    De Cheveign S, Guthmann C, Lebrun M M 1985 J. Cryst. Growth 73 242

    [22]

    Liu L X, Kirkaldy J S 1994 J. Cryst. Growth 144 335

    [23]

    Fornaro O, Palacio H A 2006 Scripta Mater. 54 2149

    [24]

    Lipton J, Glicksman M, Kurz W 1987 Metall. Mater. Trans. A 18 341

    [25]

    Muschol M, Liu D, Cummins H Z 1992 Phys. Rev. A 46 1038

    [26]

    Huang W D, Ding G L, Zhou Y H 1995 Chin. J. Mater. Res. 9 193 (in Chinese) [黄卫东, 丁国陆, 周尧和 1995 材料研究学报 9 193]

    [27]

    Ding G L, Lin X, Huang W D, Zhou Y H 1997 Acta Phys. Sin. 46 1243 (in Chinese) [丁国陆, 林鑫, 黄卫东, 周尧和 1997 物理学报 46 1243]

    [28]

    Bottin-Rousseau S, Akamatsu S, Faivre G 2002 Phys. Rev. B 66 054102

    [29]

    Karma A 1993 Phys. Rev. E 48 3441

    [30]

    Hoyt J J, Trautt Z T, Upmanyu M 2010 Math. Comput. Simulat. 80 1382

  • [1]

    Trivedi R, Somboonsuk K 1985 Acta Metall. 33 1061

    [2]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

    [3]

    Huang W D, Zhou Y H 1991 Acta Metall. Sin. 27 A86 (in Chinese) [黄卫东, 周尧和 1991 金属学报 27 A86]

    [4]

    Warren J A, Langer J S 1993 Phys. Rev. E 47 2702

    [5]

    Losert W, Shi B Q, Cummins H Z 1998 Proc. Natl. Acad. Sci. 95 431

    [6]

    Losert W, Shi B Q, Cummins H Z 1998 Proc. Natl. Acad. Sci. 95 439

    [7]

    Lin X, Li T, Wang L L, Su Y P, Huang W D 2004 Acta Phys. Sin. 53 3971 (in Chinese) [林鑫, 李涛, 王琳琳, 苏云鹏, 黄卫东 2004 物理学报 53 3971]

    [8]

    Huang W D, Lin X, Li T, Wang L L, Inatomi Y 2004 Acta Phys. Sin. 53 3978 (in Chinese) [黄卫东, 林鑫, 李涛, 王琳琳, Inatomi Y 2004 物理学报 53 3978]

    [9]

    Pocheau A, Deschamps J, Georgelin M 2007 JOM 59 71

    [10]

    Utter B, Bodenschatz E 2002 Phys. Rev. E 66 051604

    [11]

    Zhao X B, Liu L, Yang C B, Li Y F, Zhang J, Li Y L, Fu H Z 2011 J. Alloys Compd. 509 9645

    [12]

    Coriell S R, Sekerka R F 1976 J. Cryst. Growth 34 157

    [13]

    Hoyle R B, McFadden G B, Davis S H 1996 Phil. Trans. R. Soc. Lond. A 354 2915

    [14]

    Golovin A A, Davis S H 1998 Physica D 116 363

    [15]

    Wang Z J, Wang J C, Yang G C 2009 Phys. Rev. E 80 052603

    [16]

    Wang Z J, Wang J C, Yang G C 2008 Acta Phys. Sin. 57 1246 (in Chinese) [王志军, 王锦程, 杨根仓 2008 物理学报 57 1246]

    [17]

    Wang Z J, Wang J C, Yang G C 2010 Chin. Phys. B 19 017305

    [18]

    Chen M W, Lan M, Yuan L, Wang Y Y, Wang Z D, Xu J J 2009 Chin. Phys. B 18 1691

    [19]

    Chen M W, Wang X F, Wang Y L, Wang Z D 2012 Adv. Mater. Res. 365 130

    [20]

    Eshelman M A, Trivedi R 1987 Acta Metall. 35 2443

    [21]

    De Cheveign S, Guthmann C, Lebrun M M 1985 J. Cryst. Growth 73 242

    [22]

    Liu L X, Kirkaldy J S 1994 J. Cryst. Growth 144 335

    [23]

    Fornaro O, Palacio H A 2006 Scripta Mater. 54 2149

    [24]

    Lipton J, Glicksman M, Kurz W 1987 Metall. Mater. Trans. A 18 341

    [25]

    Muschol M, Liu D, Cummins H Z 1992 Phys. Rev. A 46 1038

    [26]

    Huang W D, Ding G L, Zhou Y H 1995 Chin. J. Mater. Res. 9 193 (in Chinese) [黄卫东, 丁国陆, 周尧和 1995 材料研究学报 9 193]

    [27]

    Ding G L, Lin X, Huang W D, Zhou Y H 1997 Acta Phys. Sin. 46 1243 (in Chinese) [丁国陆, 林鑫, 黄卫东, 周尧和 1997 物理学报 46 1243]

    [28]

    Bottin-Rousseau S, Akamatsu S, Faivre G 2002 Phys. Rev. B 66 054102

    [29]

    Karma A 1993 Phys. Rev. E 48 3441

    [30]

    Hoyt J J, Trautt Z T, Upmanyu M 2010 Math. Comput. Simulat. 80 1382

  • [1] Wang Xian-Bin, Lin Xin, Wang Li-Lin, Bai Bei-Bei, Wang Meng, Huang Wei-Dong. Effect of crystallographic orientation on dendrite growth in directional solidification. Acta Physica Sinica, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [2] Zhang Tong-Xin, Wang Zhi-Jun, Wang Li-Lin, Li Jun-Jie, Lin Xin, Wang Jin-Cheng. Orientation determination and manipulation of single ice crystal via unidirectional solidification. Acta Physica Sinica, 2018, 67(19): 196401. doi: 10.7498/aps.67.20180700
    [3] Gao Peng-Fei, Liu Tie, Chai Shao-Wei, Dong Meng, Wang Qiang. Influence of magnetic flux density and cooling rate on orientation behavior of Tb0.27Dy0.73Fe1.95 alloy during solidification process. Acta Physica Sinica, 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [4] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [5] Jiang Han, Chen Ming-Wen, Wang Tao, Wang Zi-Dong. Effects of anisotropic interface kinetics and surface tension on deep cellular crystal growth in directional solidification. Acta Physica Sinica, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [6] Wang Hua-Tao, Qin Zhao-Dong, Ni Yu-Shan, Zhang Wen. Multi-scale simulation of the deformation in nano-indentation under different crystal orientations. Acta Physica Sinica, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [7] The surface mapping and crystal orientation of body-centered cubic thin metal tungsten films of different thickness. Acta Physica Sinica, 2007, 56(12): 7248-7254. doi: 10.7498/aps.56.7248
    [8] Jiang Han, Chen Ming-Wen, Shi Guo-Dong, Wang Tao, Wang Zi-Dong. Effect of surface tension anisotropy on the interface morphological stability of deep cellular crystal. Acta Physica Sinica, 2016, 65(9): 096803. doi: 10.7498/aps.65.096803
    [9] Li Mei-E, Yang Gen-Cang, Zhou Yao-He. Phase field modeling of directional solidification of a binary alloy at high velocities. Acta Physica Sinica, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [10] Chu Shuo, Guo Chun-Wen, Wang Zhi-Jun, Li Jun-Jie, Wang Jin-Cheng. Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. Acta Physica Sinica, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
  • Citation:
Metrics
  • Abstract views:  1901
  • PDF Downloads:  664
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2011
  • Accepted Date:  22 December 2011
  • Published Online:  20 July 2012

Effect of crystallographic orientation on instability behavior of planar interface in directional solidification

  • 1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2011CB610402), the National Natural Science Foundation of China (Grant Nos. 50971102, 50901061), and the Fund of the State Key Laboratory of Solidification Processing in NWPU, China (Grant Nos. 02-TZ-2008, 36-TP-2009).

Abstract: The instability process of planar interface in directional solidification with respect to the crystallographic orientation is studied using a transparent model alloysuccinonitrile-acetone. Three typical crystal grains which have preferred dendrite, tilted dendrite and seaweed patterns at rapid pulling velocity respectively are chosen in our experiment. The experimental results show that the preferred dendrite grain has the shortest incubation time and the smallest initial perturbation wavelength of planar interface instability, the tilted dendrite grain has the largest ones and the seaweed grain has median ones. These results accord qualitatively with previous analytical results and phase-field simulation results. It is also found that the interfacial non-steady-state evolution behaviors of the preferred dendrite grain and the tilted dendrite grain are significantly different from that of the seaweed grain, suggesting that the non-steady-state evolution behavior of planar interface instability is closely related to the crystallographic orientation.

Reference (30)

Catalog

    /

    返回文章
    返回