Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prediction of smoothed monthly mean sunspot number based on chaos theory

Tang Jie Zhang Xiong

Prediction of smoothed monthly mean sunspot number based on chaos theory

Tang Jie, Zhang Xiong
PDF
Get Citation
  • Long-term prediction of sunspot activity is of great importance for the space activity, communication, disaster prevention and so on. Cumulative error is main shortcoming of weighted one-rank local-region forecasting model for multi-steps prediction of chaotic time series. The radial basis function neural network forecasting model based on phase reconstruction is presented for chaotic time series prediction. The model is applied to the prediction of smoothed monthly mean sunspot numbers for the 22nd and 23rd sun cycles, and compared them with the observations. The results indicate that the mean absolute errors are 5.47 and 2.82, 15 to the maximum in absolute errors, and the mean relative errors are 5.45% and 4.60%, 15.00% to the maximum in relative errors. These results show that this prediction method can be successfully used to predict the smoothed monthly mean sunspot numbers. The predicted maximal smoothed monthly mean sunspot number is 104.77 that will appear in January 2013 for 132 months of cycle 24 from January 2009 to December 2019.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11163007) and the Key Program of the Natural Science Foundation of Yunnan Province, China (Grant No. 2008A011Z).
    [1]

    Lin Y Z 2000 Introduction to Solar Physics (Beijing: Science Press) p575 (in Chinese) [林元章 2000 太阳物理导论 (北京: 科学出版社) 第575页]

    [2]

    Wang J L, Miao J, Liu S Q, Gong J C, Zhu C L 2008 Sci. China Phys. Mech. Astron. 51 1938

    [3]

    Li K J, Qiu J, Xiang F Y, Gao P X, Su T W 2005 New Astron. 10 209

    [4]

    Tang J, Zhang X 2010 Acta Phys. Sin. 59 7516 (in Chinese) [唐洁, 张雄2010物理学报 59 7516]

    [5]

    Tang J, Zhang X, Wu L 2008 Chin. Astron. Astrophys. 32 151

    [6]

    Tang J, Zhang X J, Pang Q, Zhang H J, Zheng Y G, Zhang X 2010 Chin. Astron. Astrophys. 34 121

    [7]

    Li K J, Yun H S, Gu X M 2001 Astron. Astrophys. 368 285

    [8]

    Takens F 1981 Dynamical System and Turbulence, Lecture Notes in Mathematics (Berlin: Springer) p366

    [9]

    Meng Q F, Peng Y H, Qu H J, Han M 2008 Acta Phys. Sin. 57 1423 (in Chinese) [孟庆芳, 彭玉华,曲怀敬, 韩民 2008 物理学报 57 1423]

    [10]

    Ding G, Zhong S S 2007 Acta Phys. Sin. 56 1224 (in Chinese) [丁刚, 钟诗胜 2007 物理学报 56 1224]

    [11]

    Lü J H, Lu J A, Chen S H 2001 Analysis and Application of Chaotic Time Series (Wuhan: Wuhan University Press) p57 (in Chinese) [吕金虎, 陆君安, 陈士华 2001混沌时间序列分析及其应用 (武汉: 武汉大学出版社) 第57页]

    [12]

    Packard N H, Crutchfield J P, Farmer J D, Shaw R S 1980 Phys. Rev. Lett. 45 712

    [13]

    Zhao H J, Wang J L, Zong W G, Tang Y Q, Le G M 2010 Chin. J. Geophys. 51 31 (in Chinese) [赵海娟,王家龙,宗位国,唐云秋,乐贵明 2010 地球物理学报 51 31]

    [14]

    Zhang S Q, Jia J, Gao M, Han X 2010 Acta Phys. Sin. 59 1576 (in Chinses) [张淑清,贾健,高敏,韩叙 2010 物理学报 59 1576]

    [15]

    Pesnell W D 2008 Solar Phys. 252 209

    [16]

    Wang J L, Zong W G, Le G M, Zhao H J, Tang Y Q, Zhang Y 2009 Res. Astron. Astrophys. 9 133

    [17]

    Li K J 2009 Res. Astron. Astrophys. 9 959

    [18]

    Li K J, Gao P X, Su T W 2005 Chin. J. Astron. Astrophys. 5 539

  • [1]

    Lin Y Z 2000 Introduction to Solar Physics (Beijing: Science Press) p575 (in Chinese) [林元章 2000 太阳物理导论 (北京: 科学出版社) 第575页]

    [2]

    Wang J L, Miao J, Liu S Q, Gong J C, Zhu C L 2008 Sci. China Phys. Mech. Astron. 51 1938

    [3]

    Li K J, Qiu J, Xiang F Y, Gao P X, Su T W 2005 New Astron. 10 209

    [4]

    Tang J, Zhang X 2010 Acta Phys. Sin. 59 7516 (in Chinese) [唐洁, 张雄2010物理学报 59 7516]

    [5]

    Tang J, Zhang X, Wu L 2008 Chin. Astron. Astrophys. 32 151

    [6]

    Tang J, Zhang X J, Pang Q, Zhang H J, Zheng Y G, Zhang X 2010 Chin. Astron. Astrophys. 34 121

    [7]

    Li K J, Yun H S, Gu X M 2001 Astron. Astrophys. 368 285

    [8]

    Takens F 1981 Dynamical System and Turbulence, Lecture Notes in Mathematics (Berlin: Springer) p366

    [9]

    Meng Q F, Peng Y H, Qu H J, Han M 2008 Acta Phys. Sin. 57 1423 (in Chinese) [孟庆芳, 彭玉华,曲怀敬, 韩民 2008 物理学报 57 1423]

    [10]

    Ding G, Zhong S S 2007 Acta Phys. Sin. 56 1224 (in Chinese) [丁刚, 钟诗胜 2007 物理学报 56 1224]

    [11]

    Lü J H, Lu J A, Chen S H 2001 Analysis and Application of Chaotic Time Series (Wuhan: Wuhan University Press) p57 (in Chinese) [吕金虎, 陆君安, 陈士华 2001混沌时间序列分析及其应用 (武汉: 武汉大学出版社) 第57页]

    [12]

    Packard N H, Crutchfield J P, Farmer J D, Shaw R S 1980 Phys. Rev. Lett. 45 712

    [13]

    Zhao H J, Wang J L, Zong W G, Tang Y Q, Le G M 2010 Chin. J. Geophys. 51 31 (in Chinese) [赵海娟,王家龙,宗位国,唐云秋,乐贵明 2010 地球物理学报 51 31]

    [14]

    Zhang S Q, Jia J, Gao M, Han X 2010 Acta Phys. Sin. 59 1576 (in Chinses) [张淑清,贾健,高敏,韩叙 2010 物理学报 59 1576]

    [15]

    Pesnell W D 2008 Solar Phys. 252 209

    [16]

    Wang J L, Zong W G, Le G M, Zhao H J, Tang Y Q, Zhang Y 2009 Res. Astron. Astrophys. 9 133

    [17]

    Li K J 2009 Res. Astron. Astrophys. 9 959

    [18]

    Li K J, Gao P X, Su T W 2005 Chin. J. Astron. Astrophys. 5 539

  • [1] Zhuang Zhi-Ben, Li Jun, Liu Jing-Yi, Chen Shi-Qiang. Image encryption algorithm based on new five-dimensional multi-ring multi-wing hyperchaotic system. Acta Physica Sinica, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
  • Citation:
Metrics
  • Abstract views:  1833
  • PDF Downloads:  655
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2011
  • Accepted Date:  17 January 2012
  • Published Online:  20 August 2012

Prediction of smoothed monthly mean sunspot number based on chaos theory

  • 1. School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001, China;
  • 2. College of Physics and Electronics, Yunnan Normal University, Kunming 650092, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11163007) and the Key Program of the Natural Science Foundation of Yunnan Province, China (Grant No. 2008A011Z).

Abstract: Long-term prediction of sunspot activity is of great importance for the space activity, communication, disaster prevention and so on. Cumulative error is main shortcoming of weighted one-rank local-region forecasting model for multi-steps prediction of chaotic time series. The radial basis function neural network forecasting model based on phase reconstruction is presented for chaotic time series prediction. The model is applied to the prediction of smoothed monthly mean sunspot numbers for the 22nd and 23rd sun cycles, and compared them with the observations. The results indicate that the mean absolute errors are 5.47 and 2.82, 15 to the maximum in absolute errors, and the mean relative errors are 5.45% and 4.60%, 15.00% to the maximum in relative errors. These results show that this prediction method can be successfully used to predict the smoothed monthly mean sunspot numbers. The predicted maximal smoothed monthly mean sunspot number is 104.77 that will appear in January 2013 for 132 months of cycle 24 from January 2009 to December 2019.

Reference (18)

Catalog

    /

    返回文章
    返回