Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Displacement damage effect on the characteristics of quantum well laser

Ma Jing Che Chi Han Qi-Qi Zhou Yan-Ping Tan Li-Ying

Displacement damage effect on the characteristics of quantum well laser

Ma Jing, Che Chi, Han Qi-Qi, Zhou Yan-Ping, Tan Li-Ying
PDF
Get Citation
  • Quantum well lasers are irradiated by electrons with a total fluence of 1 10-16 cm-2. The output power is reduced and the threshold current is increased under electron irradiation. The displacement damage effect on quantum well laser is analyzed theoretically and we deduce the relationship between the radiation induced output power and threshold current change and the electron fluence. The formula fits the experiment data very well, and can describe the change trend of the laser performance under electron irradiation, it can also predict the behavior of quantum well laser under radiation environment and is valuable for practical application.
    [1]

    Warner J H 2008 Ph. D. Dissertation (Baltimore: University of Maryland)

    [2]

    Claeys C, Simoen E 2002 Radiation Effects in Advanced Semiconductor Materials and Devices (Berlin: Springer-Verlag)

    [3]

    Boutillier M, Gauthier-Lafaye O, Bonnefont S, Lozes-Dupuy F, Lombez F, Lagarde D, Marie, Vermersch F J X, Calligaro M, Lecomte M, Parillaud O, Krakowski M 2007 IEEE Trans. Nucl. Sci. 54 1110

    [4]

    Taylor E W, Paxton A H, Schone H 1998 IEEE Trans. Nucl. Sci. 45 1514

    [5]

    Kalavagunta A, Bo C, Neifeld M A 2003 IEEE Trans. Nucl. Sci. 50 1982

    [6]

    Johnston A H, Miyahira T F 2004 IEEE Trans. Nucl. Sci. 51 3564

    [7]

    Lee S C, Zhao Y F, Schrimpf R D 1999 IEEE Trans. Nucl. Sci. 46 1797

    [8]

    Johnston A H 2001 IEEE Trans. Nucl. Sci. 48 1713

    [9]

    Suhara T (Translated by Zhou N S) 2002 Fundamental of Semiconductor Lasers (Beijing: Science Press) pp123-140 (in Chinese) [栖原敏明 2002 半导体激光器基础 (北京: 科学出版社) 第123—140页]

    [10]

    Ribbat C, Sellin R, Grundmann M, Bimberg D, Sobolev N A, Carmo M C 2001 Electron. Lett. 37 174

    [11]

    Cao J Z 1993 Radiation Effects in Semiconductor Material (Beijing: Science Press) pp152-170 [曹建中 1993 半导体材料的辐射效应 (北京: 科学出版社) 第152—170页]

    [12]

    Drabold D A, Estreicher S K 2007 Theory of Defects in Semicondcutors (Berlin: Springer-Verlag)

    [13]

    Agrawal G 1986 Long Wavelength Semiconductor Lasers (New York: Springer) pp30, 55-57

    [14]

    Svelto O 2010 Principles of Lasers (France: Springer) p108

    [15]

    Hu Y S, Wang L, Chen Z X 1990 Chin. J. Semicond. 11 889 (in Chinese) [胡雨生, 汪乐, 陈正秀 1990 半导体学报 11 889]

    [16]

    Walters R J, Shaw G J, Summers G P, Burke E A, Messenger S R 1992 IEEE Trans. Nucl. Sci. 39 2257

  • [1]

    Warner J H 2008 Ph. D. Dissertation (Baltimore: University of Maryland)

    [2]

    Claeys C, Simoen E 2002 Radiation Effects in Advanced Semiconductor Materials and Devices (Berlin: Springer-Verlag)

    [3]

    Boutillier M, Gauthier-Lafaye O, Bonnefont S, Lozes-Dupuy F, Lombez F, Lagarde D, Marie, Vermersch F J X, Calligaro M, Lecomte M, Parillaud O, Krakowski M 2007 IEEE Trans. Nucl. Sci. 54 1110

    [4]

    Taylor E W, Paxton A H, Schone H 1998 IEEE Trans. Nucl. Sci. 45 1514

    [5]

    Kalavagunta A, Bo C, Neifeld M A 2003 IEEE Trans. Nucl. Sci. 50 1982

    [6]

    Johnston A H, Miyahira T F 2004 IEEE Trans. Nucl. Sci. 51 3564

    [7]

    Lee S C, Zhao Y F, Schrimpf R D 1999 IEEE Trans. Nucl. Sci. 46 1797

    [8]

    Johnston A H 2001 IEEE Trans. Nucl. Sci. 48 1713

    [9]

    Suhara T (Translated by Zhou N S) 2002 Fundamental of Semiconductor Lasers (Beijing: Science Press) pp123-140 (in Chinese) [栖原敏明 2002 半导体激光器基础 (北京: 科学出版社) 第123—140页]

    [10]

    Ribbat C, Sellin R, Grundmann M, Bimberg D, Sobolev N A, Carmo M C 2001 Electron. Lett. 37 174

    [11]

    Cao J Z 1993 Radiation Effects in Semiconductor Material (Beijing: Science Press) pp152-170 [曹建中 1993 半导体材料的辐射效应 (北京: 科学出版社) 第152—170页]

    [12]

    Drabold D A, Estreicher S K 2007 Theory of Defects in Semicondcutors (Berlin: Springer-Verlag)

    [13]

    Agrawal G 1986 Long Wavelength Semiconductor Lasers (New York: Springer) pp30, 55-57

    [14]

    Svelto O 2010 Principles of Lasers (France: Springer) p108

    [15]

    Hu Y S, Wang L, Chen Z X 1990 Chin. J. Semicond. 11 889 (in Chinese) [胡雨生, 汪乐, 陈正秀 1990 半导体学报 11 889]

    [16]

    Walters R J, Shaw G J, Summers G P, Burke E A, Messenger S R 1992 IEEE Trans. Nucl. Sci. 39 2257

  • [1] Che Chi, Liu Qing-Feng, Ma Jing, Zhou Yan-Ping. Displacement damage effects on the characteristics of quantum dot lasers. Acta Physica Sinica, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [2] Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang. Multi-scale simulations of single particle displacement damage in silicon. Acta Physica Sinica, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [3] Shao Jian-Da, Fan Zheng-Xiu, Xia Zhi-Lin. Effect of bulk inclusion in films on damage probability. Acta Physica Sinica, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [4] Chen Wen-Hao, Du Lei, Yin Xue-Song, Kang Li, Wang Fang, Chen Song. Investigation on the low-freauency noise physical models and the defects' characterization of the PbS infrared dectector. Acta Physica Sinica, 2011, 60(10): 107202. doi: 10.7498/aps.60.107202
    [5] Bao Jun-Lin, Lin Li-Yan, Du Lei, He Liang. Noise as a characteriscic for current transmitting rateof optoelectronic coupled devicesfor ionization radiation damage. Acta Physica Sinica, 2011, 60(4): 047202. doi: 10.7498/aps.60.047202
    [6] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [7] Ma Jing, Che Chi, Yu Si-Yuan, Tan Li-Ying, Zhou Yan-Ping, Wang Jian. -radiation damage of fiber Bragg grating and its effects on reflected spectrum characteristics. Acta Physica Sinica, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [8] Xu Jun, Li Hong-Jun, Wang Jing-Ya, Zhao Guang-Jun, Zhao Zhi-Wei, Jiang Ben-Xue. Core center distribution of Nd∶YAG crystal grown by Temperature gradient technique. Acta Physica Sinica, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [9] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [10] Wang Xin-Hua, Pang Lei, Chen Xiao-Juan, Yuan Ting-Ting, Luo Wei-Jun, Zheng Ying-Kui, Wei Ke, Liu Xin-Yu. Investigation on trap by the gate fringecapacitance in GaN HEMT. Acta Physica Sinica, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
  • Citation:
Metrics
  • Abstract views:  1253
  • PDF Downloads:  503
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2012
  • Accepted Date:  24 May 2012
  • Published Online:  05 November 2012

Displacement damage effect on the characteristics of quantum well laser

  • 1. National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China

Abstract: Quantum well lasers are irradiated by electrons with a total fluence of 1 10-16 cm-2. The output power is reduced and the threshold current is increased under electron irradiation. The displacement damage effect on quantum well laser is analyzed theoretically and we deduce the relationship between the radiation induced output power and threshold current change and the electron fluence. The formula fits the experiment data very well, and can describe the change trend of the laser performance under electron irradiation, it can also predict the behavior of quantum well laser under radiation environment and is valuable for practical application.

Reference (16)

Catalog

    /

    返回文章
    返回