Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of displacement damage in indium phosphide induced by space heavy ions

Bai Yu-Rong Li Yong-Hong Liu Fang Liao Wen-Long He Huan Yang Wei-Tao He Chao-Hui

Citation:

Simulation of displacement damage in indium phosphide induced by space heavy ions

Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui
PDF
HTML
Get Citation
  • Indium phosphide (InP) has the characteristics of high electron mobility, large band gap, high temperature resistance, and radiation resistance. It is an important material of electronic devices in the space radiation environment. With the miniaturization of electronic devices, the displacement damage (DD) effect caused by a single heavy ion in the device may give rise to permanent failure. Therefore, this paper uses Monte Carlo software Geant4 to simulate the transportation process of space heavy ions(C, N, O, Fe) in InP. The non-ionizing energy loss (NIEL) of heavy ions is calculated for getting the information about displacement damage. Some conclusions are drawn as follows. 1) NIEL is proportional to the square of the atomic number, which means that single Fe can make severe displacement damage in InP. 2) The heavy ions NIEL is 3 to 4 orders of magnitude larger than PKA NIEL. The NIEL is proportional to the non-ionizing damage energy of recoil atoms produced by nuclear elastic collision, which indicates that the primary recoil atoms produced by heavy ions are the main cause of InP DD. 3) The number of heavy ions in space is small, so the proportion of total non-ionizing damage energy produced by heavy ions in 0.0125 mm3 InP is only 2.56% in one year. But the NIEL of heavy ions NIEL is 2–30 times that of protons and α particles, so the DD effect caused by single heavy ion incident on InP electronic device still needs to be considered. 4) NIEL decreases slightly with the increase of material thickness. The reason is that low-energy heavy ions are completely deposited in the front of InP, resulting in a non-uniform distribution of non-ionizing energy deposited in the material. Analyzing the dependence of mean DD energy with depth, we find that mean DD energy decreases with incident depth increasing, which means that the most severe DD region of heavy ions in InP is in the front of material.
      Corresponding author: He Chao-Hui, hechaohui@xjtu.edu.cn
    • Funds: Project supported by the Basic Strength Program of China (Grant No. 2019-JCJQ-ZD-267)
    [1]

    Yamaguchi M, Araki K, Kojima N, Ohshita Y 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) Calgary, OR, Canada, June 15–August 21, 2020 pp149–151

    [2]

    O’Neill P M 2010 IEEE Trans. Nucl. Sci. 57 3148Google Scholar

    [3]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [4]

    Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2017 IEEE Trans. Nucl. Sci. 64 133Google Scholar

    [5]

    Yamaguchi M, Uemura C, Yamamoto A 1984 J. Appl. Phys. 55 1429Google Scholar

    [6]

    Yamaguchi M, Ando K 1988 J. Appl. Phys. 63 5555Google Scholar

    [7]

    Walters R J, Messenger S R, Summers G P, Burke E A, Keavney C J 1991 IEEE Trans. Nucl. Sci. 38 1153Google Scholar

    [8]

    Keavney C J, Walters R J, Drevinsky P J 1993 J. Appl. Phys. 73 60Google Scholar

    [9]

    Walters R J 1995 Microelectronics J. 26 697Google Scholar

    [10]

    Messenger S R, County B, Road I H 1996 Solid. State. Electron. 39 797Google Scholar

    [11]

    Yamaguchi M, Takamoto T, Ohmori M 1997 J. Appl. Phys. 81 1116Google Scholar

    [12]

    Walters R J, Messenger S R, Summers G P, Romero M J, Al-Jassim M M, Araújo D, Garcia R 2001 J. Appl. Phys. 90 3558Google Scholar

    [13]

    Herre O, Wesch W, Wendler E, Gaiduk P, Komarov F 1998 Phys. Rev. B-Condens. Matter Mater. Phys. 58 4832Google Scholar

    [14]

    Gasparotto A, Carnera A, Frigeri C, Priolo F, Fraboni B, Camporese A, Rossetto G 1999 J. Appl. Phys. 85 753Google Scholar

    [15]

    Kamarou A, Wesch W, Wendler E, Undisz A, Rettenmayr M 2008 Phys. Rev. B - Condens. Matter Mater. Phys. 78 054111Google Scholar

    [16]

    Schnohr C S, Kluth P, Giulian R, Llewellyn D J, Byrne A P, Cookson D J, Ridgway M C 2010 Phys. Rev. B-Condens. Matter Mater. Phys. 81 1Google Scholar

    [17]

    Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372Google Scholar

    [18]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [19]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [20]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [21]

    Garcia A R, Mendoza E, Cano-Ott D, Nolte R, Martinez T, Algora A, Tain J L, Banerjee K, Bhattacharya C 2017 Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 868 73Google Scholar

    [22]

    李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹 2013 物理学报 62 058502Google Scholar

    Li X J, Liu M C, Sun Z L, Lan M J, Xiao L Y, He S Y 2013 Acta Pyhs. Sin. 62 058502Google Scholar

    [23]

    Mendenhall M H, Weller R A 2005 Nucl. Instruments Methods Phys. Res. B. 227 420Google Scholar

    [24]

    Weller R A, Mendenhall M H, Fleetwod D M 2004 Trans. Nucl. Sci. 51 3669Google Scholar

    [25]

    Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [26]

    Summers G P, Burke E A, Xapsos M A 1995 Radiat. Meas. 24 1Google Scholar

    [27]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924Google Scholar

    [28]

    Robinson M T, Torrens L M 1974 Phys. Rev. B 8 15Google Scholar

    [29]

    Akkerman A, Barak J 2006 IEEE Trans. Nucl. Sci. 53 3667Google Scholar

    [30]

    Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 260 529Google Scholar

    [31]

    Jun I, Kim W, Evans R 2009 IEEE Trans. Nucl. Sci. 56 3229Google Scholar

    [32]

    路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Tech. 34 529

    [33]

    Dale C G, Chen L, McNulty P J, Marshall P W, Burke E A 1994 IEEE Trans. Nucl. Sci. 41 197Google Scholar

    [34]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instruments Methods Phys. Res. B 268 1818Google Scholar

    [35]

    Xapsos M A, Burke E A, Badavi F F, Townsend L W, Wilson J W, Jun I 2004 IEEE Trans. Nucl. Sci. 51 3250Google Scholar

  • 图 1  能谱图 (a)宇宙射线能谱图; (b) 100 mil Al屏蔽后的宇宙射线能谱图

    Figure 1.  Energy spectrum: (a) Cosmic ray energy spectrum; (b) 100 mil Al shielded cosmic ray energy spectrum.

    图 2  1−300 MeV质子入射(a) Si 和(b) InP的NIEL计算值

    Figure 2.  1−300 MeV proton NIEL for (a) Si and (b) InP.

    图 3  不同种类重离子(a) C, (b) N, (c) O, (d) Fe入射5000 μm InP产生的平均非电离损伤能随深度分布图

    Figure 3.  Distribution average non-ionization damage energy of different heavy ions (a) C, (b) N, (c) O, (d) Fe with depth in 5000 μm InP

    表 1  Geant4模拟相关参数和NIEL计算值

    Table 1.  Geant4 Simulated parameters and NIEL.

    质子能量/MeVSi射程/mmSi厚度/mmNIEL/(MeV·cm2·g–1)InP射程/mmInP厚度/mmNIEL/(MeV·cm2·g–1)
    10.0160.00180.070040.0130.00150.0558
    20.0480.00500.037630.0380.00400.0302
    50.2160.02200.015190.1640.01800.0135
    100.7090.07500.009680.5180.05500.0079
    202.3900.24000.007591.6800.20000.0051
    5012.1801.22000.004838.3201.00000.0037
    10041.6204.18000.0026527.5303.00000.0034
    200138.63014.00000.0014890.2709.50000.0032
    300273.57028.00000.00138176.86018.00000.0033
    DownLoad: CSV

    表 2  重离子入射InP材料的设计方案

    Table 2.  Design scheme of heavy ion incident on InP.

    粒子种类粒子数目InP材料厚度/μm
    方法一H106500
    He106500
    C106500
    N106500
    O106500
    Fe106500
    方法二H12728631500
    He1187039500
    C30945500
    N8389500
    O29305500
    Fe3200500
    方法三C106500, 1000, 5000
    N106500, 1000, 5000
    O106500, 1000, 5000
    Fe106500, 1000, 5000
    DownLoad: CSV

    表 3  宇宙射线粒子及其PKA在500 μm 厚的InP中产生的NIEL统计表

    Table 3.  NIEL of cosmic ray particles and their PKA produced in 500 μm InP.

    粒子
    种类
    统计
    种类
    NIEL/
    (MeV·cm2·g–1)
    NIEL
    占比/%
    变异
    系数
    HH0.00431698.3650.03953
    PKA7.1739×10–51.6350.08716
    HeHe0.0086196.4430.02208
    PKA3.17556×10–43.5570.04532
    CC0.016599.9060.01073
    PKA1.54785×10–50.0940.20895
    NN0.0179899.9280.01309
    PKA1.2888×10–50.0720.30657
    OO0.0213299.9360.01548
    PKA1.3566×10–50.0640.20082
    FeFe0.1192299.9760.00507
    PKA2.9332×10–50.0240.15543
    DownLoad: CSV

    表 4  不同粒子在0.125 mm3 InP产生的非电离损伤能统计表

    Table 4.  Total non-ionization damage energy produced by cosmic particles in 0.125 mm3 InP.

    粒子
    种类
    入射
    数目
    非电离
    损伤能/MeV
    非电离损
    伤能占比/%
    变异
    系数
    H1272863112380.5582.140.01366
    He11870392312.7615.340.02426
    C30945116.9950.780.07564
    N838933.990.230.01548
    O29304142.740.950.05274
    Fe320086.270.560.01301
    DownLoad: CSV

    表 5  重离子在500, 1000, 5000 μm InP产生的NIEL统计表

    Table 5.  NIEL of heavy ion produced in 500, 1000, 5000 μm InP.

    重离子种类材料厚度/μmNIEL均值变异系数
    C5000.01650.01073
    10000.016390.00631
    50000.015390.00664
    N5000.017980.01309
    10000.017550.01031
    50000.016280.00723
    O5000.021320.01548
    10000.020870.00724
    50000.018780.00349
    Fe5000.119220.00507
    10000.115910.00382
    50000.094860.00303
    DownLoad: CSV
  • [1]

    Yamaguchi M, Araki K, Kojima N, Ohshita Y 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) Calgary, OR, Canada, June 15–August 21, 2020 pp149–151

    [2]

    O’Neill P M 2010 IEEE Trans. Nucl. Sci. 57 3148Google Scholar

    [3]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [4]

    Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2017 IEEE Trans. Nucl. Sci. 64 133Google Scholar

    [5]

    Yamaguchi M, Uemura C, Yamamoto A 1984 J. Appl. Phys. 55 1429Google Scholar

    [6]

    Yamaguchi M, Ando K 1988 J. Appl. Phys. 63 5555Google Scholar

    [7]

    Walters R J, Messenger S R, Summers G P, Burke E A, Keavney C J 1991 IEEE Trans. Nucl. Sci. 38 1153Google Scholar

    [8]

    Keavney C J, Walters R J, Drevinsky P J 1993 J. Appl. Phys. 73 60Google Scholar

    [9]

    Walters R J 1995 Microelectronics J. 26 697Google Scholar

    [10]

    Messenger S R, County B, Road I H 1996 Solid. State. Electron. 39 797Google Scholar

    [11]

    Yamaguchi M, Takamoto T, Ohmori M 1997 J. Appl. Phys. 81 1116Google Scholar

    [12]

    Walters R J, Messenger S R, Summers G P, Romero M J, Al-Jassim M M, Araújo D, Garcia R 2001 J. Appl. Phys. 90 3558Google Scholar

    [13]

    Herre O, Wesch W, Wendler E, Gaiduk P, Komarov F 1998 Phys. Rev. B-Condens. Matter Mater. Phys. 58 4832Google Scholar

    [14]

    Gasparotto A, Carnera A, Frigeri C, Priolo F, Fraboni B, Camporese A, Rossetto G 1999 J. Appl. Phys. 85 753Google Scholar

    [15]

    Kamarou A, Wesch W, Wendler E, Undisz A, Rettenmayr M 2008 Phys. Rev. B - Condens. Matter Mater. Phys. 78 054111Google Scholar

    [16]

    Schnohr C S, Kluth P, Giulian R, Llewellyn D J, Byrne A P, Cookson D J, Ridgway M C 2010 Phys. Rev. B-Condens. Matter Mater. Phys. 81 1Google Scholar

    [17]

    Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372Google Scholar

    [18]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [19]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [20]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [21]

    Garcia A R, Mendoza E, Cano-Ott D, Nolte R, Martinez T, Algora A, Tain J L, Banerjee K, Bhattacharya C 2017 Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 868 73Google Scholar

    [22]

    李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹 2013 物理学报 62 058502Google Scholar

    Li X J, Liu M C, Sun Z L, Lan M J, Xiao L Y, He S Y 2013 Acta Pyhs. Sin. 62 058502Google Scholar

    [23]

    Mendenhall M H, Weller R A 2005 Nucl. Instruments Methods Phys. Res. B. 227 420Google Scholar

    [24]

    Weller R A, Mendenhall M H, Fleetwod D M 2004 Trans. Nucl. Sci. 51 3669Google Scholar

    [25]

    Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [26]

    Summers G P, Burke E A, Xapsos M A 1995 Radiat. Meas. 24 1Google Scholar

    [27]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924Google Scholar

    [28]

    Robinson M T, Torrens L M 1974 Phys. Rev. B 8 15Google Scholar

    [29]

    Akkerman A, Barak J 2006 IEEE Trans. Nucl. Sci. 53 3667Google Scholar

    [30]

    Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 260 529Google Scholar

    [31]

    Jun I, Kim W, Evans R 2009 IEEE Trans. Nucl. Sci. 56 3229Google Scholar

    [32]

    路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Tech. 34 529

    [33]

    Dale C G, Chen L, McNulty P J, Marshall P W, Burke E A 1994 IEEE Trans. Nucl. Sci. 41 197Google Scholar

    [34]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instruments Methods Phys. Res. B 268 1818Google Scholar

    [35]

    Xapsos M A, Burke E A, Badavi F F, Townsend L W, Wilson J W, Jun I 2004 IEEE Trans. Nucl. Sci. 51 3250Google Scholar

  • [1] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [2] Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui. Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit. Acta Physica Sinica, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [3] Peng Chao, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Ma Teng, Cai Zong-Qi, Chen Yi-Qiang. Study on characteristics of neutron-induced leakage current increase for SiC power devices. Acta Physica Sinica, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [4] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [6] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [7] Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu. Simulated research on displacement damage of gallium nitride radiated by different neutron sources. Acta Physica Sinica, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [8] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [9] Yao Zhi-Ming, Duan Bao-Jun, Song Gu-Zhou, Yan Wei-Peng, Ma Ji-Ming, Han Chang-Cai, Song Yan. A method of evaluating the relative light yield of ST401 irradiated by pulsed neutron. Acta Physica Sinica, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [10] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [11] Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang. Multi-scale simulations of single particle displacement damage in silicon. Acta Physica Sinica, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [12] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [13] Che Chi, Liu Qing-Feng, Ma Jing, Zhou Yan-Ping. Displacement damage effects on the characteristics of quantum dot lasers. Acta Physica Sinica, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [14] Ma Jing, Che Chi, Han Qi-Qi, Zhou Yan-Ping, Tan Li-Ying. Displacement damage effect on the characteristics of quantum well laser. Acta Physica Sinica, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [15] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [16] Zhao You-Wen, Dong Zhi-Yuan. Generation and suppression of deep level defects in InP. Acta Physica Sinica, 2007, 56(3): 1476-1479. doi: 10.7498/aps.56.1476
    [17] Zhao You-Wen, Miao Shan-Shan, Dong Zhi-Yuan, Lü Xiao-Hong, Deng Ai-Hong, Yang Jun, Wang Bo. Thermally induced Fe atom transition from substitutional to interstitial sites in InP and its influence on material property. Acta Physica Sinica, 2007, 56(9): 5536-5541. doi: 10.7498/aps.56.5536
    [18] Li Xiao, Zhang Hai-Ying, Yin Jun-Jian, Liu Liang, Xu Jing-Bo, Li Ming, Ye Tian-Chun, Gong Min. Research of breakdown characteristic of InP composite channel HEMT. Acta Physica Sinica, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [19] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [20] Li Xiao, Liu Liang, Zhang Hai-Ying, Yin Jun-Jian, Li Hai-Ou, Ye Tian-Chun, Gong Min. A new small signal physical model of InP-based composite channel high electron mobility transistor. Acta Physica Sinica, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
Metrics
  • Abstract views:  3478
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  09 February 2021
  • Accepted Date:  22 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回